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1. Introduction

Physics currently describes nature in terms of four fundamental forces: Gravity,
electromagnetism, the weak force, and the strong force. Einstein’s theory of
general relativity describes gravity in terms of differential geometry, the standard
model of particle physics describes the other three forces in terms of quantum field
theories.

This work concentrates on the strong force described by quantum chromodynamics
(QCD). It is the force that binds the quarks to protons and neutrons and those
to atomic nuclei. The amalgamations of quarks are called hadrons, pairs of a
quark and anti-quark are called mesons and triplets of all quarks are called baryons.
While electromagnetism knows a single charge, QCD works with three charges,
whimsically labeled “red”, “green”, and “blue”. In contrast to gravity and electro-
magnetism, the strong force is increasing for large distances, leading to confinement.
Only objects with no net color charge can be free. Thus mesons contain quarks
with color and anti-color, the baryons contain one of each color; both are color
neutral. Individual quarks cannot be observed directly.

The emergent structure of QCD, manifest in the interaction of hadrons, can be de-
scribed with chiral perturbation theory (χPT or ChPT), albeit with some numerical
factors known as low energy constants (LEC) that must be derived from experiment.
It is not directly possible to compute those LECs analytically from QCD. Large
simulations of the underlying theory make it possible to estimate these LECs and
see whether QCD really is the underlying theory of the hadrons.

The precision of these numerical experiments is limited by the available computing
power. We will first look at the foundations of Lattice QCD and then at a particular
simulation of the full theory. The later chapters cover the optimizations needed to
make best use of the available computing resources. In the appendix, the reader
will find rather technical information about the tools used in this thesis.
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2. Lattice Gauge Theory

This chapter will introduce the needed theoretical foundations to simulate QCD on
a computer. It is assumed that the reader has a basic understanding of “normal”
continuum QCD and the path integral.

2.1. Quantum Chromodynamics

Quantum chromodynamics is the current theory of the strong force. It is a quantum
field theory (QFT) describing the quarks as Nf flavors of spin-1⁄2 fermions and gluons
as massless spin-1 force carriers. The gauge group is SU(3) as we observe Nc = 3
colors in experiments.

All information about the theory is contained in the Lagrange density [1]

L =
1
2

Tr
color

�

GµνG
µν
�

+ ψ̄ (i/D−m)ψ , (2.1)

with the gluon field strength tensor Gµν, the spinor field vector of quark flavors ψ,
the gauge covariant derivative D, and the mass matrix m in flavor space. Summa-
tion over repeated indices is implied. The various quantities are explained in the
following list.

Gauge Field The gauge field A is a 1-form in the su(Nc) algebra (adjoint rep-
resentation) and also a Lorentz vector field with components Aa

µ where µ
is a Lorentz index (µ = 0, . . . , 3) and a is an su(Nc) algebra index (a =
1, . . . , N2

c − 1).
Field Strengh Tensor The field strength tensor G is the exterior derivative, G =

dA+ A∧ A and therefore gauge algebra valued and a two-form over space-
time.

Covariant Derivative The covariant derivative D is the connection, in compo-
nents it is Di j

µ = ∂µδi j + iAi j
µ where Ai j

µ = Aµaλ
i j
a is the expression contracted

with the SU(Nc) generators λa (fundamental representation). The “D slash”
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8 2. Lattice Gauge Theory

operator /D is defined as /D= Dµγ
µ where the γ-matrices are the generators

of the Dirac algebra, equivalent to quaternions.
Spinor Field The spinor field ψ is a Grassmann number valued complex vector

fields with color (i, j), spin-Lorentz indices (α, β), and flavor indices ( f ,
f ′). The adjoint field ψ̄ is defined as ψ†γ0.

With all indices explicitly written out, the Lagrange density becomes

L(x ) =
1
2

Gab
µν(x )G

µν ba(x )

+ ψ̄i
α f (x )
�

iγµ
αβ

�

∂µδ
i j − Ai j

µ(x )
�

δ f f ′ −δi jδαβm f f ′
�

ψi
γ f ′(x ) .

Observables can formally be computed using the path integral formalism [2]. The
vacuum expectation value of an operator Ô in time ordering T is given by

〈0|TÔ|0〉=

∫

DADψ̄DψO(A,ψ, ψ̄) exp(iS(A,ψ, ψ̄))
∫

DADψ̄Dψ exp(iS(A,ψ, ψ̄))
, (2.2)

where the action S is given by S =
∫

d4 x L(x ). The notation Dψ means an
integration over all possible Grassmann number valued fields ψ(x ). Only for very
simple models this functional integration can be evaluated analytically, one is the
harmonic oscillator.

In theories with weak coupling, like quantum electrodynamics (QED) or the high-
energy sector of QCD, one can expand the exponential in terms of the coupling
constant and derive the Feynman rules. With low-energy QCD this is not possible,
one cannot make any expansion as the coupling parameter gs (here defined into A
and therefore contained in /D and Gµν) is not small below the energy scale ΛQCD.

2.2. Euclidean Time

Numerically performing the integration in Equation (2.2) is not sensible, the
integration space has many dimensions and the integrand is oscillating on the
whole domain. One performs the Wick rotation and introduces imaginary time τ
such that the relationship with regular time t is t = −iτ. Then the exponential
factor will change from exp(iS) to exp(−S) due to the dx0 in the integral over the
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Lagrange density. This effectively is a Boltzmann weight and one can rewrite the
path integral expectation value as

〈O〉=
1
Z

∫

DADψ̄DψO(A,ψ, ψ̄) exp(−S(A,ψ, ψ̄)) (2.3)

with the partition function

Z :=

∫

DADψ̄Dψ exp(−S(A,ψ, ψ̄)) . (2.4)

The region with contributing configurations is now localized around the minimal
action (classical path). The action S is real and bounded from below, therefore the
weight can be written as a probability density function

P(A,ψ, ψ̄) =
exp(−S(A,ψ, ψ̄))

Z
. (2.5)

Sampling of such a distribution over a high dimensional space is best done with
Monte Carlo methods and will be covered in Section 2.4. Before doing so on a
computer, we will have to discretize the theory.

2.3. Discretizations

The configuration yi of the degrees of freedom must be stored in computer memory.
Therefore it is needed to discretize space and time. An uniform hyper-cubic lattice
with spacing a is introduced such that x = an with n ∈ Z4. The lattice cannot be
infinite on the computer, it has to have a finite extent. Usually all three spatial
extents Ls ∈ N+ are chosen the same, the temporal extent Lt ∈ N+ is often chosen
larger. The whole lattice has a volume V = L3

s · Lt. Periodic boundary conditions
are imposed to obtain translational invariance of the system and to remove surface
effects. All boundaries are periodic, except for fermions in the time direction, there
the boundary is anti-periodic in order to allow relating lattice measurements back
to Minkowski space [3].

The discretization of QCD is not unique. Multiple discretizations are possible, they
must only agree with QCD in the continuum limit. Discretization errors will scale
with O(a) or a higher power. We may use this freedom to introduce additional
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n n + µ̂Uµ(n)

(a) Forward

n n + µ̂Uµ(n)†

(b) Backward

Figure 2.1.: Gauge links U are the parallel transporters of the gauge field between
next neighbor lattice sites. The backwards direction is given by the
hermitian conjugate.

terms that scale with (positive) powers of the lattice spacing a to remove some of
the discretization errors.

2.3.1. Gauge Field

A direct discretization of QCD would give spinor fieldsψ(n) and gauge fields Aµ(n)
as the fundamental degrees of freedom. One cannot, however, construct gauge
invariant quantities using Aµ on the lattice. Only by using the parallel transporter
between lattice sites,

Uµ(n) := U(n,n + µ̂) = exp

�

i

∫ n+µ̂

n
dn′ Aµ(n

′)

�

,

one can construct invariant quantities. These gauge link matrices U and the fermion
fields ψ are the fundamental degrees of freedom in the lattice gauge theory. The
links are defined between next neighbors in the lattice, as shown in Figure 2.1. The
fermions are defined on the lattice points, although there are subtleties depending
on the discretization scheme used.

The plaquette is the parallel transporter around a 1× 1 square in the lattice:

Pµν(n) := Uµ(n)Uν(n + µ̂)U
†
µ(n + ν̂)U

†
ν(n) . (2.6)

The trace of the plaquette is invariant under gauge transformations. See Figure 2.2
for a graphical illustration of the plaquette. It corresponds to the gluon field
strength tensor and is used in the gauge part of the action to order a2:

Sg = β
∑

n,µ,ν

�

1−
1
2

Tr
color

�

Pµν(n) + P†
µν(n)
�

�

.
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n n + µ̂

n + ν̂ n + µ̂+ ν̂

Uµ(n)

Uν(n) Uν(n+ µ̂)

Uµ(n+ ν̂)

Pµν(n)

Figure 2.2.: The plaquette, see Equation (2.6), consisting of a square of four links.

One can lessen discretization errors by adding more plaquette-like quantities like
rectangles to the action.

2.3.2. Wilson Fermions

The Dirac operator contains partial derivatives. On the lattice, those are expressed
using difference quotients as introduced by Wilson [4]. We can introduce the
forward and backward partial derivatives [5, p. 128],

∂µ f (x ) =
f (x + aµ̂)− f (x )

a
, ∂ ∗µ f (x ) =

f (x )− f (x − aµ̂)
a

.

With the gauge interaction, different points are gauged differently and the parallel
transporter is needed to compare the two tangent spaces. The gauge covariant
derivatives on the lattice are [5, p. 129]

∇µψ(x ) =
Uµ(x )ψ(x + aµ̂)−ψ(x )

a

∇∗µψ(x ) =
ψ(x )−U†

µ(x − aµ̂)ψ(x − aµ̂)

a
.

Using these derivatives, we can build a symmetrized version of the gauge covariant
derivatives to obtain the fermionic part of the action for a single flavor f ,

ψ̄ f γµ
∇µ +∇∗µ

2
ψ f .
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The discretization of the fermions unfortunately is not this simple. Differential
equations formulated using a symmetric discretized derivative might have a second
solution that alternates its sign on the lattice sites.1 In the continuum limit (a→ 0),
those oscillating solutions are not sensible. For finite lattice spacing as used in the
simulations, this becomes a problem. The other solution is a fermion doubler that
has the same mass and is otherwise degenerate with the one fermion of interest.
This happens for each dimension, so the simulation has 16 fermions where we
only want a single one.

The No-Go-Theorem by Nielsen and Ninomiya [6] says that if one simulates a
theory on a lattice, one will observe doublers iff the theory has (a) gauge invariance,
(b) translational invariance, (c) locality, and (d) chiral symmetry in the massless
limit. For doublers to be removed from the spectrum, at least one of the four
assumptions of the theorem needs to be given up. The one which we could do
without is the chiral symmetry. The Wilson term

−ψ̄ f a
r
2
∇∗µ∇µψ f

couples left-handed with right-handed particles and therefore breaks the chiral
symmetry. By tuning the parameter r, called Wilson parameter, one can adjust the
masses of the doublers. The choice in the literature is to set r = 1 and not write it
out explicitly. In the continuum limit the doublers will become infinitely heavy and
completely decouple. For finite lattice spacing the doublers will be heavy enough
to not change the interesting part, the low lying spectrum. The breakage of chiral
symmetry gives rise to new discretization errors that previously were forbidden by
that symmetry.

Another disadvantage of this technique is the additive renormalization of the quark
masses. In continuum QFT the renormalization is purely multiplicative. Here it
will take a form like Z(m0 −mcr). The critical mass is not known beforehand and
has to be extracted from lattice data.

1This can be seen with a simple example given by Thomas Luu on a problem set from 2016.
Take the differential equation f ′(x) = λ f (x) which has the solution f (x) = f (0)eλx . Using a
discretized derivative, this ODE becomes f ([n+ 1]a)− f ([n− 1]a) = 2aλ f (na) where a is the
spacing and n labels the sites. Using the ansatz f (na) = f (0)en ln(g) gives g = λa±

p

(λa)2 + 1.
Using ln(x + 1) = x +O(x2) and ln(x − 1) = iπ− x +O(x2) one can show that the extrapolated
continuum solutions are f (x) = f (0)eλx and f (x) = f (0) (−1)n e−λx . At finite a, the two
solutions are equivalent, in the limit a→ 0 the second solution is incorrect.
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2.3.3. Reducing Discretization Errors

Due to finite computing resources we are bound to simulate with finite lattice
spacing and extent. Discretization errors with O(a) and O(a2) must be taken into
account and a continuum extrapolation must be performed. Removing the O(a)
effects will make this extrapolation a→ 0 easier and allows for use of larger values
of the lattice spacing a in the simulations.

The standard procedure is the Symanzik improvement program [5, 7] which adds
higher order operators to the Lagrange density of the theory. The operators are of
dimension five or higher and therefore scale as O(a) and O(a2); they vanish in the
continuum limit. One has to choose a linear combination of the operators such
that the O(a) coefficient vanishes. The O(a2) terms might have increased during
this process. Also one pays with increased complexity of the discretized action to
be simulated.

Clover Term In order to remove the O(a) discretization errors, one includes the
so-called “clover term” by Sheikholeslami and Wohlert [8]. This term reads

i
1
4

cSWψ̄ fσµνFµνψ f =: cSWψ̄ f Tψ f ,

where cSW is a parameter that needs to be tuned such that the O(a) effects are
properly cancelled. Figure 2.3 shows the discretized version of this term. In the
tree level perturbation theory, the appropriate value for cSW is 1.0. However, due
to renormalization, the optimal value depends on the quark masses and the lattice
spacing. Therefore one would need to run simulations with multiple lattice spacing
and different clover coefficients. From extracted observables one would tune the
coefficient until the lattice effects to not show up as O(a) effects any more.

As one can see from the explicit lattice representation of Fµν [7, Eq. (6)], that
term is antihermitian. Together with the imaginary unit, the whole clover term is
hermitian. This means that the γ5 hermiticity of the kinetic operator (M† = γ5Mγ5)
is not spoiled by the addition of the clover term.

Twisted Mass As long as two quarks have the same mass, the theory has an
SU(2) flavor symmetry. This is broken by different masses since the su(2) generators
(Pauli matrices) do not commute with the mass matrix any more. In a massless
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n

n+ µ̂+ ν̂n+ µ̂+ ν̂ n+ ν̂

n+ µ̂

Pµν(n)

Figure 2.3.: Illustration of the clover term. Adapted from Jansen and Liu [7].

theory, there is full chiral symmetry. The addition of the Wilson term breaks this
symmetry, but its orientation in flavor space can be chosen freely.

Automatic O(a) improvement can be obtained by using a twisted mass [5, 9, 10].
The idea is to introduce a mass that is the same for a doublet. Then one can
rotate the spinor fields with a spin-flavor rotation, namely exp(iωγ5τ

3/2) [5, p. 7]
with twist angle ω, without changing physical observables. After the rotation, one
introduces the Wilson term and then breaks the chiral symmetry.

In practice one sets m0 = mcr in order to get regular multiplicative renormalization.
Then one introduces a new mass term, iµγ5τ

3. This mass term is rotated in flavor
space and is orthogonal to the Wilson term. Therefore one does not suffer from
the O(a) discretization errors. This improvement is manifested in “correlation
functions made of parity even multiplicatively renormalizable fields” [5, p. 35].

Due to the explicit two-flavor structure of τ3, twisted mass can only describe
a doublet of quarks. The addition of a mass splitting term like −ετ1 allows to
simulate a non-degenerate doublet.

2.4. Generation of Configurations

2.4.1. Integrating out Fermion Fields

The Grassmann algebra of the fermionic fields cannot be implemented on the
computer sensibly, they need to be removed. A Grassmann algebra with N numbers
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can be represented with matrices with side length 2N . A spinor field has 12V
components (color, spin). For a small V = 163×32 lattice this would be 1572 864
components and therefore dimension in the order of 10473479. The matrices would
be sparse and contain a limited amount of different non-zero entries. One example
are the Dirac matrices which are sparse and only contain ±1 and ±i. Still, the
needed bits vastly exceeds the number of baryons in the visible universe. An
implementation of such a large Grassmann algebra using matrices is out of the
question. A better approach is given by Creutz [11] but that would also not scale
for the volumes that we are interested in.

A Gaussian integral with ordinary real numbers and a positive definite matrix
A like
∫

dn x dn y exp(−x iAi j y j) will give 1/det(A). With Grassmann fields, the
integral
∫

dnη dnθ exp(−ηiAi jθ j) will yield det(A). Integrating out the fermion
fields ψ̄ andψ will convert the exp(−ψ̄Mψ) in the path integral into det(M). The
Grassmann fields are integrated out and need no representation in the computer
program. This is done for each flavor of fermions in the theory. A degenerate
doublet of light quarks gives for instance det(Ml)2.

One could evaluate this determinant in numerical simulations. The computation
has cost of O(V 3) and is therefore very expensive. At the time where one did not
have today’s algorithms and computing power, one would simply set det(M) = 1
in order to perform the simulation at an acceptable speed on a reasonable lattice
size. One calls this the quenched approximation. This is equivalent to removing the
fermions from the action during the simulation. The fermions in the determinant
are the sea fermions only. One can still compute correlation functions on the gauge
configuration with valence fermions. Loop corrections are only computed for gluon
loops, without sea fermions, no fermion loops are possible. Today there is a more
efficient algorithm which will be introduced in Section 2.4.8. Computers have
advanced as well, a simulation with quenched quarks can be written in a couple of
weeks [12, 13] and reproduce 37 year old results like the ones from Creutz [14]
on an average laptop.

Interestingly, the results obtained with the quenched approximation are not that
far off the results with dynamical quarks. There are numerical instabilities intro-
duced by this where extremal values in the other terms are not canceled by the
determinant. This is another drawback of this approximation.
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Criterion

Algorithm Order Exact Ergodic Year

Metropolis V 4 yes yes 1953
Langevin V no yes 1981
Microcanonical V no no 1982
Hybrid Monte Carlo V yes yes 1987

Table 2.1.: Evolution of the algorithms towards an efficient, exact, and ergodic
algorithm. [15, Table 1]

2.4.2. Development of Algorithms

With a suitable algorithm one can sample a probability distribution such that the
more likely values are realized more often. This is called importance sampling.
The expectation value of an operator then becomes the arithmetic mean of the N
samples, 〈O〉=

∑N
i=1 Oi/N . In this section the basic building blocks of the hybrid

Monte Carlo algorithm are introduced. The probability distribution that we want
to sample is the weight in the path integral, given in Equation (2.5).

There are three important criteria for the algorithms used in lattice gauge theory.
The algorithms developed can be categorized by these and it makes apparent why
that algorithm was developed.

1. Computational complexity, the order in the volume V . As computer time is
an expensive resource one always tries to make the most out of the allocated
time. Scaling to larger volumes is needed for lighter quark masses. A high
order in the volume makes this scaling prohibitively expensive.

2. Exactness. Any numerical algorithm can only be exact to machine precision.
If an algorithm is free of systematic errors, it is called “exact”.

3. Ergodicity, the reversibility of time. This is required for the proof of the
detailed balance condition that will be introduced below. Reversibility viola-
tions will introduce systematic errors.

Table 2.1 shows a summary of the algorithms presented here. We will look at the
algorithms in detail in what follows.
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2.4.3. Markov Chains

An effective means to obtain such a set of configurations distributed with respect
to Equation (2.5) is a Markov chain. Elements yi in this chain are related to
their preceding element by a transition probability P(yi → y j) =: Pi j . In order to
maintain thermal equilibrium, we need to have detailed balance:

P(yi → y j)e
−Si = P(y j → yi)e

−S j . (2.7)

The product of transition probability and occupation number is the total number
of states changing from i to j. In the thermal equilibrium the occupation number
must not change any more, therefore the number of configurations in one ensemble
going from i to j must be exactly the same as the number of transitions back from
j to i. The transition probability of the Markov chain needs to fulfill this detailed
balance condition. There is a freedom in choosing the particular Pi j. Taking
P(yi → y j) = e−S j will fulfill detailed balance and is called the heat bath algorithm.
For a general system it is very hard to sample the configuration space directly to
obtain this transition probability.

2.4.4. Metropolis Algorithm

A more practical approach than the heat bath algorithm is the Metropolis algorithm
[16]. It provides a computationally feasible way to update configurations such
that detailed balance is maintained. An application to the harmonic oscillator is
given by Creutz and Freedman [17].

The algorithm uses a transition probability of P(yi → y j) =min(1, eSi−S j ). Insert-
ing this into detailed balance condition, Equation (2.7), one directly finds that this
algorithm fulfills it.2 With this scheme one randomly picks a new configuration
y j and accepts it with the probability min(1, eSi−S j ). Otherwise it is rejected and
the old configuration is added to the set of configurations another time. Then one
repeats this procedure. The proposed configuration must be sampled in a way
independent of the old configuration.

The generalization, the Metropolis-Hastings algorithm [18], allows to draw the
proposed configuration from an instrumental distribution. In the acceptance
step, the instrumental distribution needs to be included as well. The Metropolis

2Assume Si > S j . Then min(1, eSi−S j ) = 1 and min(1, eS j−Si ) = eS j−Si . Detailed balance is fulfilled:
1 · e−Si = eS j−Si e−S j .
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algorithm is the special case where the instrumental density does not depend on the
configuration, therefore the fraction just cancels in the acceptance probability. The
heat bath has the instrumental distribution equal to the target density, therefore
effectively removing the acceptance step.

In practice one wants to keep the acceptance rate around 70 %, therefore one
samples close to the previous configuration yi. Acceptance rates which are too
high indicate that one does moves through phase space too slowly, therefore
autocorrelation will be large. If the rate is too low, autocorrelation from duplicated
configurations will be an issue.

The advantage of the Metropolis algorithm over the heat bath algorithm is that
choosing the next candidate configuration is much easier. One does not have to
sample according to e−S which can be hard to impossible depending on S. Here
one can just randomly choose a new candidate, at the cost of perhaps having to
reject and try again. The acceptance step will also eliminate numerical errors
like rounding or systematic effects from integrators. In order to maintain a high
acceptance rate, one must ensure that changes in the action are not large. Choosing
the new configuration not much different compared to the previous configuration
will work, the price to pay are long autocorrelation times.

For a pure gauge theory this would be implemented by iterating through all the
links and randomly choosing a new candidate for each link from SU(Nc). With a
Metropolis step this new link may be accepted. One full sweep through all links
would be one Monte Carlo iteration. When fermions are included, the fermionic
determinant would have to be computed for each of the O(V ) links in the lattice.
The cost of a determinant is O(V 3), so in total the Metropolis algorithm for full
QCD would need O(V 4) steps for one iteration [15, § 3.1]. This is too expensive to
be useful on large lattices.

2.4.5. Pseudo Fermions

In order to make computation of the fermionic determinant cheaper, we use pseudo
fermions [19, 20]. The idea is to move the determinant back into the exponential
using a Gaussian integration with c-number fields instead of Grassmann fields.
A positive operator is needed in order to interpret the exponential weight as a
probability distribution. The fermionic operator Ml is not positive definite in
general. For the up and down quarks, we have almost equal masses and make
the approximation that they are the same. Therefore we obtain det(Ml)2 from
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the Grassmann integration over the light quark fields ψu and ψd. Using that
det(γ5) = 1, we can rewrite those two determinants like this:

det(Ml)
2 = det(MlMl) = det(γ5Mlγ5Ml) = det(M†

l Ml) .

Defining Q2
f := M†

f M f gives a positive operator as needed. In the action we
introduce an isospin doublet of light quarks with a single (c-number valued) pseudo
fermion field φ. That part of the action then is φ∗[Q2

l ]
−1φ, so the determinant

is rewritten as
∫

Dφ∗Dφ exp(−φ∗[Q2
l ]
−1φ). The path integral of the bosonic

fields φ will just produce det(Q2) as desired. The cost of the pseudo fermions is
that the expression [Q2]−1φ needs be computed during each evaluation of this
monomial. This is done by solving the system Q2 x = φ, the major cost of lattice
QCD calculations. Chapter 4 will focus on a library that provides a fast solver for
this equation.

Just like the calculation of the determinant, the inversion of the operator is a
lattice-global operation, but at a much reduced computational cost. Due to the
construction, one can only simulate a degenerate doublet of quarks. For the
light quarks, this is not a real limitation, for the strange and charm quarks, it is.
Therefore a method for single quark fields is needed.

2.4.6. Rational Approximation

Integrating out a single strange quark in the action gives det(Ms). Pseudo fermions
would give the same result if one simulates

φ∗
Æ

[Q2]−1φ

in the action. Just using φ∗Q−1φ is not a viable choice because Q−1 alone is not
positive definite. In the case of twisted mass fermions, the operator M already is
a two flavor operator that is diagonal in space. The down-flavor contains −iµγ5
due to the τ3, this minus sign could also be interpreted as complex conjugation.
Therefore it is possible to interpret the two flavors of the twisted mass doublet as
single-flavor operators M and M† which naturally form Q2. For the non-degenerate
case ε 6= 0, this is not possible, the square root of Q2 (with Q a two-flavor operator)
needs to be taken here as well in order to get a single non-degenerate doublet.

Taking the square root of a matrix operator must be implemented with some kind
of expansion. One method is the polynomial approximation [21] where

p
A is
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approximated with a polynomial P(A) which has a finite number of terms. An
improved variant is the rational approximation [22] which will be introduced
next.

The approximation for the square root needs to be sufficiently accurate over the
range of eigenvalues of Q. The first step therefore is to measure the eigenvalue
spectrum with a thermalized configuration. For a simulation with new parameters
this is a circular dependency (chicken–egg problem), one has to monitor the
eigenvalue spectrum during the thermalization and adjust the eigenvalue bounds
of the approximation as needed. The computation of all eigenvalues is expensive
and also not needed, only the minimal and maximum eigenvalue are needed. In
Chroma3 one uses Ritz eigenvalues. These are computed as part of an Arnoldi
iteration [23]. The Ritz eigenvalues always lie outside of the spectrum [24], giving
some safety margin automatically.

Once the eigenvalue spectrum is known, one can use the Remez algorithm [25,
26] to compute a rational approximation in form of a partial fraction expansion,

Æ

[Q2]−1 ≈
∑

i

αi

Q2 + βi
.

The number of terms in the expansion can be chosen freely depending on the
accuracy of the approximation needed. Chroma needs the GNU Multi Precision
library [27] in order to compute the needed coefficients αi and βi .

The rational approximation can be used to improve another problem as well
even for degenerate doublets using the “n-th root trick” by Clark and Kennedy
[28]: When the quark masses are chosen smaller, their force contribution will
increase. A single pseudo fermion field will introduce statistical noise which might
trigger an instability in the integration. By rewriting det(A) as det(A1/n)n and
using n independent pseudo fermion fields, the integration becomes more stable
since individual statistical fluctuations are smaller. Similarly, one can choose to
use independent pseudo fermion fields for the summands in the partial fraction
expansion for a fermion field singlet.

The computation of the (Q2+βi)−1φ are done by solving the equation (Q2+βi)x =
φ for x . The only difference in the terms in the summands are the shifts βi . With a
multi shift solver [29] one can solve the equation once for the smallest shift and then
quickly obtain the solution for the next larger shift. This makes approximations
with over ten fractions still feasible to compute.

3Software package for lattice QCD simulations, will be introduced in Chapter 3.
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0 1 2 3 4τ

U

π

Figure 2.4.: Leap-frog integration. The coordinates U are evaluated on multiples
of ∆τ using Equation (2.9a), the momenta π are evaluated on the
sites in between using Equation (2.9b). The very first and very last
momentum step is done with a time step of ∆τ/2.

2.4.7. Molecular Dynamics

New configurations of gauge links can be obtained by evolving the four dimensional
system as a whole in a fifth “time” dimension. Momenta πnµ are introduced
together with the guidance Hamiltonian

HMD = S +
1
2

∑

n

∑

µ

Re Tr
color
(π2

nµ) . (2.8)

From Hamilton’s equations one can obtain equations of motion along this un-
physical fifth dimension. Using a numerical integration method one evolves one
configuration of gauge links in the phase space along a hyperplane of constant HMD.
Integration schemes like Runge-Kutta do not conserve the energy and will lead to
systematic errors. It is advantageous to use a symplectic integrator such that HMD
is conserved along the trajectory even though there are temporary fluctuations.
This type of integrator also conserves phase space volume. The simplest such
integrator is the leap frog. In that scheme, the time evolution is given by

Uµ,n(τ+∆τ) = exp
�

i∆τπµ,n(τ+∆τ/2)
�

Uµ,n(τ) , (2.9a)

πµ,n(τ+∆τ) = πµ,n(τ) +∆τ π̇µ,n(τ) . (2.9b)

These equations keep U within SU(Nc) and are based on the ones given by Lippert
[15, § 3.1]. The key element of the leap frog is the evaluation of the momenta
in between the time slices. The gauge links are discretized with spacing ∆τ. In
the first step, the momenta are only evolved by ∆τ/2 and then by ∆τ afterwards.
This is illustrated in Figure 2.4. The momentum derivative π̇ depends on the
action used and includes force from fermions and gluons. Higher order symplectic
integrators are available [30] and used in practice.
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2.4.8. Hybrid Monte Carlo

A microcanonical molecular dynamics (MD) algorithm does not move through
configuration space fast enough. It also only probes one hypersurface of constant
energy within the Markov chain. One needs to have some way to leave the energy
surface. The Langevin algorithm is a method to simulate statistical systems. It
works by adding a random momentum from a Gaussian distribution and then
solves the differential equations for a single time step. Momenta are refreshed and
then point into a different direction in the phase space. The complexity scales as
O(V ), but it is not exact [15, § 3.1]. A combination of the Langevin with the MD
algorithm is a compromise that refreshes the momenta after a few MD integration
steps. This algorithm is also not exact, needing an extrapolation to zero time
stepping. Adding a global Metropolis step makes the algorithm exact. This is the
hybrid Monte Carlo algorithm by Duane et al. [31]. The whole HMC algorithm
goes as follows:

1. Create the pseudo fermion fields by sampling from a standard normal distri-
bution and applying the kinetic operator once.

2. Sample the momenta randomly from su(Nc).
3. Perform NMD steps of molecular dynamics with time step ∆τ such that

NMD∆τ≈ 1 using the integration steps in Equation (2.9).
4. Accept the new configuration with probability P =min(1, e−∆H). ∆H is the

change in the value of the guidance Hamiltonian before and after Step 3:
∆H = Hafter −Hbefore.

Besides the original paper [31] where the HMC has been applied to compact QED,
there is a paper on the application to QCD [32] as well as an introduction for
non-experts [15].

2.5. Optimization Tricks

The pseudo fermion fields are expensive to compute. If one tries to directly imple-
ment the above algorithms, one would need a much larger amount of computing
time than with the tricks that will be introduced in this section. One has to use
a large number of time steps in the molecular dynamics algorithm in order to
get a good acceptance rate. Evaluating the fermion monomials is expensive, so
reductions in the complexity will save vast amounts of computing time.
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2.5.1. Even-Odd Preconditioning

Even-odd preconditioning is a technique by Degrand and Rossi [33] that allows
to work with half of the lattice only. It also reduces the condition number of the
equations that have to be solved. The mechanism will be introduced in the most
general case for this work, the non-degenerate twisted mass (NDTM) doublet. The
kinetic operator contains the following terms:

M = −
1
2
/DW + 4+m+ iµγ5τ

3 − ετ1 + cSWT ,

where /DW is the Wilson Dslash operator, 4+m = α is the normal mass and the
Wilson parameter (4r = 4), µ is the twisted mass, ε is the mass splitting, and T
the clover term. This quantity has intricate tensor structure: The Dslash connects
neighboring lattice sites in space time; Dslash, γ5, and T act in spin space; Dslash
and T act in color space; τ3 and τ1 act in flavor space.

The lattice can be divided into even and odd sites4, such that all eight nearest
neighbors of an even site are odd sites and vice versa. We can then split the
kinetic operator M into two parts: A local part and a hopping part, which connects
neighboring lattice sites. The local part only connects even with even sites (and
odd with odd) and the hopping part connects even with odd sites (and vice versa).
Writing this splitting explicitly in even-odd matrix form, it reads

M =

�

Mee Meo
Moe Moo

�

EO

.

We will indicate the space of the matrices in this section explicitly, otherwise it can
become hard to distinguish even-odd from flavor or spin structure. In our case, we
have Meo = −/Deo/2 and the remaining terms make up the local operator:

Mee/oo = α+ iµγ5τ
3 − ετ1 + cSWTee/oo .

For the pseudo fermion fields, the kinetic operator M has to be inverted. One can
use a LU decomposition [34, 35] to rewrite the matrix M as

M =

�

Mee 0
Moe 1

�

EO

�

1 M−1
ee Meo

0 Moo −MoeM−1
ee Meo

�

EO

. (2.10)

4The exact way of assigning even and odd is not important here, QPhiX uses x + y + z + t mod 2
to assign the checkerboard. Then 0 is assigned as even and 1 as odd.
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The lower right matrix element is usually defined as the odd-odd operator M̃oo,
namely M̃oo := Moo −MoeM−1

ee Meo. The power of this decomposition is that the
inverse of this product will be a product of similar looking matrices:

M−1 =

�

1 −M−1
ee MeoM̃−1

oo
1 M̃−1

oo

�

EO

�

M−1
ee 0

−MoeM−1
ee 1

�

EO

.

The parts that are local to the lattices sites are the two diagonal elements in even-
odd space: The off-diagonal elements are just the Dslash operator. By virtue of the
decomposition, we do not need to invert the whole operator at once, but rather
only have to invert Mee and then M̃oo. Without the clover term (cSW = 0), Mee
can be analytically inverted and is given by

M−1
ee =

α− iµγ5τ
3 + ετ1

α2 +µ2 − ε2
.

With the clover term (cSW 6= 0), one has to use a numerical method for inversion.
Since the clover term is diagonal in space-time (no derivatives included), inversion
can be done independently for each lattice site. Inverting the 12× 12 matrices
(spin, color) is comparatively cheap and easily parallelizable.

The condition number of M̃oo is much reduced compared to the full operator. Also
all matrix operations only need to act on half the volume which is an additional
reduction in computational cost. The lattice extent is now restricted to an even
number of sites in each direction. For finite temperature calculations, where the
temperature is the inverse of the temporal lattice extent, this restriction can be
severe. In these cases one needs to apply the full operator and cannot make use of
this acceleration.

We conclude this section by writing out the flavor structure of the full precondi-
tioned odd-odd operator. In general this is M̃oo = Moo −MoeM−1

ee Meo. Plugging
in the odd-odd and even-even term as well as the hopping matrix Meo = −/Deo/2
gives

M̃oo = α+ iµγ5τ
3 − ετ1 −

1
4
/Doe
α− iµγ5τ

3 + ετ1

α2 +µ2 − ε2
/Deo .

For the flavor structure we will use the shorthand d := α2 + µ2 − ε2 for the



2.5. Optimization Tricks 25

denominator and write

M̃oo =

�

α+ iµγ5 −
1

4d /Doe(α− iµγ5)/Deo −ε− ε
4d /Doe /Deo

−ε− ε
4d /Doe /Deo α− iµγ5 −

1
4d /Doe(α+ iµγ5)/Deo

�

f

.

(2.11)

2.5.2. Mass Preconditioning

The closer the quark masses come to their (small) physical value, the harder the
equation M†Mx = φ, as needed in the fermionic action

Sf = φ
†
0(M

†
0 M0)

−1φ0 ,

becomes to solve with an algorithm like conjugate gradient [36] or BiCGStab [37]
Additionally, the forces due to the fermions become larger. Therefore one needs to
integrate with smaller time steps in order to keep the change in momentum F · δτ
approximately constant.

By introducing a second field of pseudo fermions one can distribute the force and
condition number on both of them. This technique was proposed by Hasenbusch
[38] and the added terms are often called “Hasenbusch terms”. One introduces a
second kinetic operator M1 := M0+ρ1 such that this new operator M1 corresponds
to a higher quark mass. This way the forces are smaller and the system is easier
to solve. The precondition mass can also be chosen as a twisted mass, M1 =
M0 + iρ1γ5 such that M†

1 M1 = M†
0 M0 +ρ2

1 = Q2
0 +ρ

2
1 . The action is changed to

the following:

Sf = φ
†
0M†

1(M
†
0 M0)

−1M1φ0 +φ
†
1(M

†
1 M1)

−1φ1 .

The first term will be easier to solve because the right hand side is not just a pseudo
fermion field but a preconditioned one with M2. This reduces the forces such that
one can choose the time stepping δτ a bit larger. The second term is a normal
inversion but with a larger quark mass and therefore faster and more stable.

These terms are also called “determinant ratio” and “determinant” because one can
also express this in the intermediate stage before the introduction of the pseudo
fermions as

det(Q2
0) =

det(Q2
0)

det(Q2
0 +ρ

2
1)
· det(Q2

0 +ρ
2
1) .
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This technique can be combined with even-odd preconditioning. The determinant
of the kinetic operator M can best be computed from the decomposition given in
Equation (2.10). The even/odd preconditioning comes in by writing

det(M) = det(Mee)det(M̃oo) .

The determinant of Q̃ has to be evaluated using the pseudo fermion approach.
The determinant det(1+ Tee) does not need pseudo fermions, it can be evaluated
directly via logdet(Mee) (also called “trace log”) in the action. Each determinant
ratio will feature one det(Mee) in the numerator and one in the denominator, these
cancel cleanly and one only needs a single log det(Mee) term in the action.

In the Chroma software [39] one uses a CONSTDET5 monomial for the determinant
ratios and the determinants because Mee does not depend on the pseudo fermions
and will be treated separately. In case the Clover term is not employed, logdet(Mee)
will just a constant number and does not affect the physics in any way. With the
clover term, one has to add a single LOGDET6 term for all mass preconditioning
terms. This might be different in other lattice QCD implementations.

2.5.3. Multiple Time Scales

The action of an theory with Nf = 2+ 1 flavors with clover term consists of various
monomials, gauge, light determinant, clover log-det, the rational approximation.
Each contributes to the total force on the gauge field. Their magnitudes are not all
the same, though. The change is ∆U = π∆τ where π is the momentum. When
momenta are smaller, they can be integrated with coarser time steps. Ideally the
time steps are chosen such that each monomial contributes the same change to
the gauge field.

This can be achieved by using different time scales for the monomials [40]. The
monomials with the smallest force will be integrated on the outer time scale. The
monomials contributing more are evaluated more often. The integration interval
∆τ is split up into smaller intervals for these monomials. Figure 2.5 shows the
evaluations of monomials on three time scales for one step on the outer time scale.

5TWO_FLAVOR_EOPREC_CONSTDET_FERM_MONOMIAL for the determinant and
TWO_FLAVOR_EOPREC_CONSTDET_RATIO_CONV_CONV_FERM_MONOMIAL for the determinant
ratio

6N_FLAVOR_LOGDET_EVEN_EVEN_FERM_MONOMIAL
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τ τ+ δτ

Figure 2.5.: Nesting of time scales with the second order Omelyan integrator. Each
interval of size ∆τ is split into n subintervals of size δτ. Within
each time interval, the integrator evaluates the force at τ+λδτ and
τ+(1−λ)δτ. We have chosen the default value ofλ≈ 0.193. A nested
time scale will divide the time interval using the same prescription.
The top row is the outermost time scale, then the first and second
nesting.

Depicted is a second order integrator, so that the number of steps doubles with
every additional time scale.

Fortunately the monomial with the largest force, the gauge monomial, is one of the
cheapest to compute. Therefore one can gain performance by evaluating the more
expensive monomials less often. The error in the energy, ∆H, will not change
significantly, keeping the acceptance rate steady. Less evaluations of the expensive
monomials mean less time per trajectory. Four time scales are easily reached for a
production ensemble, but more time scales can also be useful.





3. Gauge Configuration Generation
with Chroma

3.1. Software Overview

There are multiple software suites for lattice QCD available. Figure 3.1 provides an
overview of the packages that are mentioned in this section. The suites differ in the
discretizations implemented and also the targeted architectures. This work covers
mostly the software from the USQCD collaboration. Their simulation package is
called Chroma [39, 41] and requires a few modules:

• The QDP++ (QCD Data Parallel) library [42] provides data parallel algo-
rithms that work with lattice data structures. It also provides a solver for
the fermion matrix which is the performance critical part.

QDP++ is implemented in C++ and uses expression templates. This way
one can write high-level code with value semantics and still benefit from
algorithmic optimizations below. The template expressions can be resolved
to CPU or GPU code. The latter is done by the variant QDP-JIT (QDP Just In
Time compilation) [43–45]. The expression templates with the JIT compiler
will collect all instructions desired, upload all inputs to the GPU at once and
only copy the end result back. This utilizes the limited bandwidth in the
PCIe bus most efficiently.

• Communication over the network is done with the QMP (QCD Message
Passing) library [46] which is a wrapper for MPI [47]. The 4D network
topology and the location of the neighboring ranks is hidden in this library.

• The QMT (QCD Multi Threading) library [48] for threading has been replaced
by OpenMP [49]. It provides similar facilities for parallelization with threads.

29
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QPhiX
QDP++Chroma

GMP QMP

QIO

libxml2

C-LIMEtmLQCD

DDαAMG

QUDA

Figure 3.1.: Interplay of the various software packages. Solid arrows are denote
dependencies. Dashed arrows denote optional dependencies. The
dotted arrow indicates that QPhiX can be tested against QDP++ but
does not use it for production.

• QPhiX1 [50, 51] is a relatively new addition to the software suite and provides
a faster implementation of the fermion matrix solver for the Intel Xeon Phi
architecture and also for Intel Xeon. This library will be covered in more
detail in Chapter 4.

• The LIME library [52] provides a file serialization format that is interleaves
XML records for metadata and binary blobs for gauge configurations or
propagators. This is wrapped in the QIO (QCD Input Output) library [53]
which provides parallel IO to QDP.

The tmLQCD package [54, 55] provides similar facilities. It is written in C and
only depends on the LIME [52] library and its MPI extension Lemon [56] for
file serialization. The use of the same data format makes it easy to use gauge
configurations generated with Chroma and tmLQCD with the other program.
Compilation of tmLQCD is much easier than setting up Chroma due to this lack
of a dependency hierarchy. It also features operators for different variants of
twisted mass: Wilson, clover, non-degenerate. It can optionally interface with
other solver libraries like DDαAMG which provides an adaptive multigrid solver
or QUDA that provides solvers on NVIDIA accelerators. An interface to the QPhiX

1Usually pronounced “q-phi-ex”, sometimes “q-fix”.
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solver has been developed by Bartosz Kostrzewa in the last months, my thesis
contains contributions to this effort.

3.2. Simulation Setup

In the longer term, the σ resonance is to be analyzed. This is an application where
twisted mass fermions suffer from unphysical excited state pollution, therefore
plain Wilson fermions with a clover term are used. The states arise due to the
following. Pions are the lightest hadrons that can be formed. The simplest scat-
tering process that creates a σ from pions is π0π0→ σ. This process is allowed
by isospin coupling, |1,0〉 ⊗ |1,0〉 3 |0,0〉, and parity, 0−+ · 0−+ → 0++. With
twisted mass, parity and isospin are explicitly broken such that the neutral pion
is indistinguishable from the vacuum [5, p. 71]. This means that conventionally
forbidden transitions would contribute in this framework. The pion–pion scattering
data would be contaminated by states π0X for all states X that would be allowed
without twisted mass. This can be done recursively to add arbitrary amounts
of neutral pions. These lower lying states need to be extracted and subtracted
from the data before the scattering of interest becomes visible. The disadvantages
of additional states outweigh the advantages of automatic O(a) improvements.
Therefore plain Wilson clover fermions are better suited for this particular task.

Both Chroma and tmLQCD can generate plain Wilson clover configurations. Since
the group has lots of experience with tmLQCD, this is a good opportunity to test
out Chroma and get some hands-on experience with it.

Finding a good set of parameters for a lattice QCD simulation is hard and re-
quires a lot of tuning. Therefore we have started with values provided by the
Budapest-Marseille-Wuppertal collaboration [57] and used their heaviest and coars-
est parameters for a first test. Later on an ensemble with lighter quarks has also
been used. The two sets of parameters are listed in Table 3.1.

Given their quoted lattice spacing of a−1 = 1616(20)MeV, the pion masses are
expected to be around 660 MeV and 270 MeV in physical units. These have to be
measured once enough gauge configurations are generated. The measurement
will be described in a following section. The heavier bare quark masses have the
advantage that a smaller volume can be simulated. Temporal correlations functions
of pions, the lightest hadronic state with mass Mπ, behave like exp(−Mπ t). The
finite lattice extent in space L introduces finite size effects as terms of exp(−MπL).
The largest effect will come from the pion mass because that is the lightest hadronic
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aml ams Lattice Size aMπ aMK

−0.0960 −0.057 16× 323 0.4115(6) 0.4749(6)
−0.1265 −0.057 32× 963 0.169(1) 0.3500(7)

Table 3.1.: Selected parameters from the Budapest-Marseille-Wuppertal collabora-
tion [57]. The coupling is β = 3.3 in both cases. They give an inverse
lattice spacing of a−1 = 1616(20)MeV.

state. One has to choose the lattice extent L such that MπL ≥ 4 in order to suppress
these finite size effects by a good factor. This means that higher masses allow for
smaller (and cheaper) lattices.

The gauge action used is the tree level improved action by Lüscher and Weisz
[58, p. 347]. The coupling β = 3.3 has been used2 with periodic boundary
conditions. The quark fields are coupled to the gauge field after it had been stout-
smeared [59] six times with strength3 ρ = 0.11 in all four space-time dimensions.
The clover term is included with a coefficient of cSW = 1.0, the tree-level value.
Due to the extensive smearing it is expected that this is a good approximation.
Fermion fields have periodic boundary conditions in space and anti-periodic ones
in time. Integration is performed using the minimal norm integrator which is
called LCM_STS_MIN_NORM_2 in Chroma’s XML input file. The molecular dynamics
trajectory length τ is always chosen as 1.0, the number of steps is varied to give
an acceptance rate of roughly 70 % to 80 %.

Several stages of tuning were needed to thermalize the lattice. The simulation
was started from a random (hot) configuration and subsequently cooled down.
The action of the system has been decreasing in the beginning, therefore every
update has been accepted. This allowed for coarse integration in the molecular
dynamics part. Also running with a single time scale was possible. Once the energy
had somewhat thermalized, the acceptance rate decreased. The addition of more
integration steps in the molecular dynamics improved the acceptance rate but

2Chroma uses a different convention for the tree level improved action. A factor 5/3 from the
Symanzik improvement program has been factored out. One has to supply βChroma = 5.5 in the
parameter file in order to get the correct result.

3When ρ > 0.125 is chosen, the system will behave in strange ways. The energy difference ∆H in
the molecular dynamics will show large fluctuations and no thermalization. It might be that one
hits an instability in the integrator and the systematic errors in the integrations pump energy
into the system. On the outer time scale one needs thousands of integration steps in order to get
some thermalization which will be incredibly slow.
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Ensemble Lattice Size aml ams

sWC_A2p1_Mpi660_L16T32 16× 323 −0.0960 −0.057
sWC_A2p1_Mpi270_L24T96 24× 963 −0.1265 −0.065
sWC_A2p1_Mpi270_L32T96 32× 963 −0.1265 −0.065

Table 3.2.: The three ensembles of gauge configurations that are generated as part
of this thesis.

made each configuration more expensive to compute. The addition of more mass
preconditioning terms and distributing these on multiple time scales made the
simulation more effective while maintaining a medium high acceptance rate.

The heavy ensemble has been named sWC_A2p1_Mpi660_L16T32. The “sWC” stand
for the “stout Wilson clover”. The letter “A” stands for the coarsest lattice spacing,
finer lattice spacings will get letters “B” and so on. The “2p1” stand for Nf = 2+ 1,
namely a degenerate doublet of light quarks and a single strange quark. The last
two words stand for a pion mass of 660MeV and the lattice size of 163 × 32.

After a sufficient number of gauge configurations have been generated, the pion and
kaon masses have been measured and found to agree with the values quoted by the
Budapest-Marseille-Wuppertal collaboration [57]. The measurement process will
be covered in Section 3.7. Confident that the parameters have been set correctly
and consistently, two lighter ensembles have been started on slightly larger lattices.
Table 3.2 summarizes the lattices generated in this work. The two production
ensembles had to be thermalized exactly like the test ensemble. After several
weeks of tuning, four time scales, two mass preconditioning terms and a split
rational approximation are used. The production setup is listed below, it shows
the nesting of the time scales and the number of steps on each of them. For the
L = 32 ensemble, the outer time scale uses 15 time steps instead of 12. Everything
else is exactly the same.

• 12 Steps:
– Light determinant ratio (masses −0.1265/−0.068737 01)
– Strange quark, smallest 4 shifts of the rational approximation

• 12-1 Steps:
– Light determinant ratio (masses −0.068737 01/0.508892 9)
– Strange quark, largest 10 shifts

• 12-1-1 Steps:
– Light log-det
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– Strange log-det
– Light determinant (mass 0.508892 9)

• 12-1-1-1 Steps:
– Gauge

For all monomials, the QPhiX conjugate gradient solver is used. For the molecular
dynamics the (non-squared) residual of 10−6 is used whereas in the acceptance
10−9 is used for improved precision. A last solution predictor uses the previous
solution as starting point for the next solve. This can introduce reversibility
violations, hence also the stricter tolerance in the acceptance step. Edwards,
Horváth, and Kennedy [60] state that a residual of 10−8 is sufficient to make the
reversibility-violating effects negligible. Further investigations [61, 62] show that
insufficient arithmetic precision leads to reversibility violations. Running a whole
simulation of a larger lattice in single precision will introduce significant errors in
observables [62]. Therefore we use double precision. In the future we might use a
mixed precision solver to improve efficiency. Since the residual check is done in
double precision, this will not have any effect. The restarts in the mixed precision
solver will actually improve the accuracy of the solution.

3.3. Mass Parameter Tuning

The masses given by the FLAG collaboration [63, p. 30] for the pion and kaon
with physical quarks but only QCD effects are Mphys

π = 134.8(3)MeV and Mphys
K =

494.2(3)MeV. These are what we would expect in the limit of zero lattice spacing
and physical quark masses.

The bare strange quark masses used by the Budapest-Marseille-Wuppertal collab-
oration [57] are such that the kaon does not have the physical value but rather
565.6(29)MeV, which is roughly 10 % too large. On the lattice with β = 3.3, the
physical kaon mass in lattice units is aMphys

K = 0.306(4). A lower value for ams
has to be chosen such that the kaon mass obtains a value close to the physical
value such that less quantities are unphysical in our simulation. Changing the bare
strange quark mass will change the pion mass as well, though the effect will be
small. Here only an estimation is done such that kaon mass is somewhat close to
the physical value, we want to reduce the kaon mass around 10 % compared to
the reference value.
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Figure 3.2.: Pion mass dependence on the light bare mass using the β = 3.3 data
by the Budapest-Marseille-Wuppertal collaboration [57].

From the Gell-Mann-Oakes-Renner relation [64, p. 93] M2
π = 2Bml, and the data

given by the Budapest-Marseille-Wuppertal collaboration [57], the low energy
constant B can be deduced. On the lattice with Wilson fermions there is the critical
mass to consider, therefore the generalization [5, p. 17]

(aMπ)
2 = 2aB(aml − amcr)

is needed. A fit using all bare light quark masses and measured pion masses by
the Budapest-Marseille-Wuppertal collaboration [57] gives aB = 2.288(9) and
amcr = −0.13292(6). The data, fit curve, and extrapolation to the physical pion
mass are shown in Figure 3.2.

Chiral perturbation theory gives a similar relation for the mass of the kaon, namely
M2

K = B(ml +ms). The dominating summand will be the strange quark mass. The
reduction of the kaon mass by roughly 10 % is achieved by reducing the (non-bare)
strange quark mass to 90 % of its previous value:

(ams)
new = 0.9 · [(ams)

paper − amcr
︸ ︷︷ ︸

quark mass

] + amcr .
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This results in a change in ams from−0.057 to−0.065. The accuracy of this change
can only be seen after generating a sufficient amount of gauge configurations and
measuring the kaon mass. The calculation of the critical mass has only been
possible since these lattices have already been generated by another group that
has published the connection of bare parameters and meson masses. If one starts
from scratch, one does not have this convenience.

Knowing the critical mass also enables finding of good parameters for the mass
preconditioning. A rule of thumb says that the quark masses should be a factor 10
apart [65, p. 6]4. Therefore the precondition mass with index i is computed as

(aml)i = 10i · [aml − amcr] + amcr .

The sequence of masses starts with the target value and can be extended for any
number of preconditioning terms needed; the first elements are −0.1265, −0.0687
and 0.5089.

3.4. Performance Tuning

Besides the physical parameters (bare masses am, coupling β) and the numerical
parameters (preconditioning, time scales), there are options that have an impact
on the performance. These include the choice of compiler, compilation flags and
the choice of modules from the USQCD software repository. Then one has to
find a suitable number of threads for each MPI rank and the number of ranks per
node. For the strong scaling, one has to make a good choice of the 4D domain
decomposition. The lattice is divided into equal blocks and distributed to the MPI
ranks. One has to choose the mapping from these blocks to the MPI ranks to reflect
the network topology.

The first test runs have been done on JUQUEEN [67]. The default compiler, IBM
XLC, does not support C++11 and therefore could not be used. Via the module
system a newer version of GCC is available, but that does not support the QPX
intrinsics for that architecture. A modified version of Clang with intrinsics support
is available and can compile Chroma. The performance is not what we have hoped,
therefore an attempt was made to use the Bagel library [68]. It seems that Chroma
only supports version 1 of Bagel whereas that version only supports Blue Gene/P

4Reference found through Reference [66].
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Figure 3.3.: Performance of the Chroma BiCGStab solver compared against the
QPhiX implementation.

machines. JUQUEEN is a Blue Gene/Q machine that needs Bagel in version 3. The
interfaces have changed, so this is a dead end.

The second machine that I was granted computing time on, JURECA [69], is an Intel
Xeon Haswell machine with dual socket E5-2680 v3 @ 2.50 GHz, 12 cores each.
The performance with the default solvers in Chroma was also below our hopes.
The QPhiX library provides solvers optimized for Intel Xeon Phi architectures and
also provides huge benefits on the Intel Xeon platform. Figure 3.3 illustrates the
speedup of ten that has been observed with the BiCGStab solver on 81 nodes of
JURECA, “Hyper-Threading” was not used. Both programs have been compiled
with the Intel C++ compiler in version 2017. The needed number of iterations
was 265±3 on an almost thermalized 243×96 lattice. The data was generated for
a previous talk [70]. Chroma together with QPhiX provides a good performance
to generate gauge configurations.

Since JURECA is a dual socket machine, the performance is improved by using
one MPI rank per socket. This allocates the memory for the two CPUs on different
memory banks and therefore it is closer to the cores that use it. Communication
between the sockets is explicitly over MPI and not implicitly via shared memory
among threads. Using simultaneous multithreading (SMT, Intel calls it “Hyper-
Threading”) made the performance worse, so we just use 12 threads per MPI rank.
Highly optimized code (like QPhiX) will not exhibit a lot of memory latency and is
memory bandwidth bound, there is no benefit from more threads, it just creates
more overhead for this application. Pinning of the threads to the cores gives an
additional benefit. This can be tuned on a single node until one has the best single
node performance.
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The strong scaling onto multiple nodes depends on the domain decomposition.
The 4D lattice has to be distributed onto the number of MPI ranks. Chroma uses
the notion of four “geometry” factors which denote the number of ranks in the
direction. The lattice size that each MPI rank is assigned then is the quotient of
the global lattice size and the geometry factor. The Dslash operator is a nearest
neighbor operator, therefore the boundaries need to be communicated between
adjacent MPI ranks. Choosing the local lattice size to have the similar extents
in every direction should give the least surface area possible. This should limit
communication to the necessary minimum and allow for optimal scaling. QPhiX
uses a data structure where each direction has a unique role. The x (and a bit of
y) direction is used for SIMD vectors, y and z are divided into blocks for cache
prefetching. The data layout of QPhiX is described in more detail in Chapter 4.
This complicated layout adds more constraints to the domain decomposition and
our experience is that choosing the geometry factors in increasing order gives the
best performance.

On every machine one should run an exhaustive test of all domain decompositions
to get the optimal configuration to run the simulation with. Table 3.3 shows all
allowed geometries for a 643 × 128 lattice on two nodes and the most extreme on
128 nodes. One can see clearly the great variation between the decompositions. The
number of jobs to run is large but each test only takes a few seconds. Overall core-
hours invested are well spent given potential significant speedups. Aggregating the
best geometry for a particular lattice and a given number of nodes, one obtains the
strong scaling behavior as shown in Figure 3.4. The larger lattices scale much better
because the ratio of computation to communication is much higher. Curiously the
medium lattice seems to perform better than the larger lattice. The most likely
explanation is that the data fits into the caches earlier and therefore more memory
bandwidth is provided. For the large lattice, the speedup from 64 to 128 nodes
looks like impossibly good scaling, which likely is the same cache effect.

In double precision, the good scaling stops much later because of the additional
computational work. We have doubled the number of nodes as long as the speedup
has been a factor 1.5 or more. On JURECA, the L = 24 ensemble ran on 64 nodes
and needed around 8 minutes per configuration. The L = 32 ensemble ran on 128
nodes and consumed between 13 and 16 minutes per configuration. This results
in around 200 and 750 core-hours per trajectory, respectively.
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Decomposition

Nodes Ranks X Y Z T Performance / GF/s

2 2 2 1 1 1 204.3(11)
4 4 1 1 1 215.3(1)
4 2 2 1 1 260.2(2)
4 2 1 2 1 270.4(2)
2 1 2 1 1 273.2(9)
4 2 1 1 2 275.3(2)
2 1 1 2 1 337.0(37)
4 1 4 1 1 351.9(2)
4 1 2 2 1 367.7(3)
2 1 1 1 2 368.1(48)
4 1 2 1 2 377.3(3)
4 1 1 4 1 379.9(3)
4 1 1 2 2 393.4(4)
4 1 1 1 4 410.2(3)

128 128 4 1 2 16 5367.2(837)
256 4 8 2 4 10811.9(2523)
128 1 4 8 4 11766.5(6436)
256 1 2 8 16 19172.0(542)

Table 3.3.: Spread in Dslash performance on JURECA with 2 nodes and 128 nodes.
It can be seen that using two MPI ranks per node is advantageous. Also
the correct domain decomposition is crucial for performance, there
is a significant factor between the best and worst decomposition. On
two nodes, all decompositions are shown; on 128 nodes only best and
worst for each rank number are shown. This is a 643×128 lattice using
single precision. Block sizes are 8, padding in x y is 1 and 0 for x yz.
The SoA length is set to 4.
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Figure 3.4.: Strong scaling on JURECA with three different lattice sites. Perfor-
mance is shown in 1012 floating point operations per second and is
proportional to the speed-up. Both axes are linearly scaled, perfect
scaling would be a straight line. Over-perfect scaling likely is a cache
effect.

3.5. Second Replica

The generation of configurations in one ensemble cannot be parallelized in the
sense that different nodes generate different configurations. As seen in the previous
section, the maximum number of nodes that can efficiently be used for a particular
ensemble is also limited, therefore the actual time spend per configuration is rather
fixed.

The best one can do is a factor of two by creating a second branch in the Markov
chain. Once the lattice has deemed to be thermalized, one starts a second simu-
lation with exactly the same physical parameters based on one particular gauge
configuration, number 500 has been used in the L = 24 ensemble. The random
seeds are altered and then the two replicas evolve into different directions of the
phase space. Exploiting time reversal allows to join the replicas at the branching
point to yield a longer Markov chain. Figure 3.5 illustrates this process and the
naming of “forward” and “backward” ensemble. Once configuration generation
is done, one can rename the configurations starting from zero in a continuous
fashion.



3.6. Autocorrelation Time 41

498

499

500f 501f 502f501b502b

Figure 3.5.: Preliminary naming of the configurations of the forward and backward
replica that are branched from configuration 500.

3.6. Autocorrelation Time

The Markov process inherently has autocorrelation in it because we generate
configurations based on previous ones. It might take a couple of updates until
there is no correlation noticeable any more. The number of correlations that feel
the history is called integrated autocorrelation time. The autocorrelation A of an
observable O is defined by

A(t − t0) = 〈[O(t)− 〈O〉][O(t0)− 〈O〉]〉 .

This is normalized to give Γ (t) = A(t)/A(0). From this the integrated autocorrela-
tion time

τint =
1
2
Γ (0) +

W
∑

t=0

Γ (t)

can be computed. It would be appealing to choose the cutoff W very large in
order to get the best estimate. Since Γ has statistical noise associated with it, one
would end up summing a lot of random noise and effectively yielding no sensible
value. Therefore the cutoff should be chosen such that Γ (W ) becomes zero in a
sensible fashion. A robust method of computing the cutoff W has been developed
by the ALPHA collaboration [71] and is also implemented in R-hadron [72] as
uwerrprimary.

Figure 3.6 shows how the integrated autocorrelation time of the plaquette is
computed for the L = 24 lattice. The result is τint = 7.68(193). Therefore in the
later analysis of this ensemble, we use a spacing of at least 8 configurations in
order to remove the autocorrelation among the configurations. Other observables
might have a different autocorrelation times, one would have to perform a similar
analysis for each observable to make sure that one has removed the autocorrelation
with a sufficient spacing.
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Figure 3.6.: Calculation of the integrated autocorrelation time using the algorithm
by the ALPHA collaboration [71]. The lines show optimal cutoff W and
zero in the upper plot, optimal cutoff and corresponding integrated
autocorrelation time in the lower plot.
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An alternative method is the blocking where one just takes every nth measure-
ment into account or averages them beforehand. The value of n where the error
on the result does not change any more also is an estimate for the integrated
autocorrelation time.

3.7. Meson Mass Extraction

The mass of the pion and kaon can be computed quickly and compared to the values
given by the Budapest-Marseille-Wuppertal collaboration [57]. For this first analy-
sis, the configurations with numbers 400 to 649 of the sWC_A2p1_Mpi660_L16T32

ensemble will be used. The last change in the simulation parameters has been at
number 300. The choice allows for a sufficient number of configurations and a
relaxation time of τ= 100 in molecular dynamics units.

3.7.1. Correlators

Correlation functions of the respective meson operators O contain the effective
mass. One can see this quickly by taking some energy eigenstates |n〉 and write

C(t) = 〈0|O(t)O†(0)|0〉= 〈0|eHtOe−HtO†|0〉

=
∑

n

〈0|eHtOe−Ht |n〉 〈n|O†|0〉

=
∑

n

e−[En−E0]t |〈0|O|n〉|2 .

In general, the operator O excites multiple energy eigenstates, just like plucking
of a string excites multiple harmonic modes. For t →∞ only the lowest energy
will dominate the correlation function. By fitting a falling exponential to the
correlation, one can extract the lowest lying excited state.

For the pion, the operator is ψ̄lγ5ψl. The correlation between different time slices
is given by

Cπ(t) = 〈[ψ̄lγ5ψl](t) [ψ̄lγ5ψl](0)
†〉 .

The kaon has one of the light quark fields replaced by a strange quark field, ψs,
such that the correlator then is given by 〈[ψ̄lγ5ψs](t) [ψ̄lγ5ψs](0)†〉.
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Figure 3.7.: Quark line diagram for a single pion. A up-quark and an anti-down-
quark propagate from time 0 to time t.

All three pions have the same mass in pure QCD in the isospin limit. Therefore
it is sufficient to look at the π+ only; it is the easiest case because there are two
distinct quark flavors and no self-loops can occur. The meson operator is d̄γ5u.
The whole correlation function can be written as a single Wick contraction:

Cπ(t) = 〈d̄(t)γ5u(t) [d̄(0)γ5u](0)]†〉= 〈ū(t)γ5d(t) d̄(0)γ5u(0)〉

= −〈u(0)ū(t)γ5 d(t)d̄(0)γ5〉= −〈Su(0, t)γ5 Sd(t, 0)γ5〉 .

When the up and down quark masses are degenerate, one can use the γ5 hermiticity
of the propagator and rewrite the correlator as

Cπ(t) = −〈Su(0, t)S†
u(0, t)〉 .

This allows to re-use one propagator for the other degenerate quark flavor. Fig-
ure 3.7 shows the corresponding quark line diagram for this contraction. Chroma
can compute those propagators from the gauge configuration. One has to cre-
ate a source, potentially smear it, build a propagator (invert), and then contract
the propagators with the Γ structures of interest. Chroma calls the contractions
“hadron spectrum” and will do all 16 of the Γ structures. Section A.1.2 contains a
pointer to a complete input XML file that has been used to compute the pion and
kaon propagator.

Every state that is probed by the pion or kaon operator will give a contribution
of the form exp(−M t) + exp(−M[T − t]), where T is the temporal extent of the
lattice and M is the effective mass of that state. In the region t ≈ T/2 the state
with the smallest mass (ground state) will be the largest contribution, therefore
it can be extracted by a fit to data points around the center of the correlator.
Due to the periodic boundary conditions in time and the symmetries of C(t), the
correlator will by symmetric around the point T/2. It is common practice to fold
the correlator around that point and average the (numerically equal) values. In a
plot, it will look like a falling exponential curve with slight corrections from the
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Figure 3.8.: Effective mass of the pseudoscalar mesons on the L = 16 lattice, com-
puted with Equation (3.1). The values for t < 5 are rather large and
obfuscate the plateau. The shaded band denotes the one standard error
confidence interval around the reference results aM [57]

π = 0.4115(6)
and aM [57]

K = 0.4749(6) by the Budapest-Marseille-Wuppertal collab-
oration [57].

cosh-like behavior.

3.7.2. Effective Mass

A suitable fit range can be found with the effective mass which is the negative
logarithmic derivative of the correlator. In the region where the ground state
becomes the dominant contribution, a plateau is expected. The discretized variant
of this quantity,

aMπ(t) = arcosh
�

C(t − 1) + C(t + 1)
2C(t)

�

, (3.1)

is shown in Figure 3.8 for the L = 16 lattice. The figure also shows the reference
values aM [57]

π = 0.4115(6) and aM [57]
K = 0.4749(6) that were obtained by the

Budapest-Marseille-Wuppertal collaboration [57].

An alternative definition of the effective mass is given by the exponential definition
[73, p. 61] which is solved numerically for Mπ:

C(t)
C(t + 1)

=
exp(−Mπ t) + exp(−Mπ[T − t])

exp(−Mπ[t + 1]) + exp(−Mπ[T − [t + 1]])
.
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Both definition have been applied to the L = 24 ensemble. Correlation functions
have been computed using Chroma’s point sources on configurations 501 to 2269
with a spacing of 8 on the forward replica. Figure 3.9 shows the effective mass
with both definitions. One can see that the exponential solve gives a much better
signal.

3.7.3. Correlated Fit

The correlator shows correlation in the time variable, therefore a simple least-
squares fit would underestimate the error. We will quickly review the simple
least-squares method to expand it for autocorrelation. Given are data points yi
with a corresponding explanatory variable x i and a model f (x ,λ) with parameters
λ j . The likelihood function f (x , y,λ) = exp(−χ2) with

χ2 =
∑

i

(yi − f (x i ,λ))2

σ2
i

shall be maximized. Each fraction in the sum is the deviation of the data from the
model (the residual) in terms of the uncertainty of that data point. Minimizing
χ2 is an equivalent procedure and usually used directly. This expression can be
written in matrix form after introduction of the residual vector ri := yi − f (x i ,λ)
and the covariance matrix Ĉi j = σ2

i δi j . Then the quantity to minimize is given as
χ2 = ri(Ĉ−1)i j r j, with summation over repeated indices implied. Uncorrelated
fit models have a diagonal covariance matrix. Correlation is encoded in the non-
diagonal elements. The covariance matrix of the correlators is computed as

Ĉi j =



(C(i)− C̄)(C( j)− C̄)
�

.

The “bracket” average is to be taken over all the configurations (250 in this case)
where the correlator has been evaluated. The “bar” average is to be taken over all
time values t of the correlator on one configuration. If there was no correlation
within the correlator, the quantity 〈C(i)C( j)〉 would only be nonzero if i = j and
the usual (diagonal) standard deviation is recovered.

The inverse covariance matrix Ĉ−1 is real and symmetric. Therefore a Cholesky
decomposition can factor it into LT L where L is a lower triangular matrix. The χ2
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Figure 3.9.: Effective pion mass from point sources on the L = 24 ensemble using
221 configurations. The shaded box shows the one standard error
band of an uncorrelated fit to the correlators using the R-hadron
package.
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can be rewritten by defining new residual vectors:

χ2 = r TĈ−1r = r TLT
︸︷︷︸

sT

Lr
︸︷︷︸

s

= |s |2 .

This redefined form can be used in regular least-squares routines as for instance
shipped with SciPy [74] or R [75].

Performing a correlated fit starting at t = 7 as described with the aforementioned
cosh-like model to the L = 16 ensemble, effective masses of aMπ = 0.4229(52)
and aMK = 0.4832(52) are obtained. These compare nicely5 to the corresponding
reference results aM [57]

π = 0.4115(6) and aM [57]
K = 0.4749(6) by the Budapest-

Marseille-Wuppertal collaboration [57].

Using the fit.effectivemass function from R package “hadron” [72], Bartosz
Kostrzewa has set up a script that basically does the same steps. The difference is
that R-hadron is more comprehensive than my code and it also has the exponential
solve definition of the effective mass. Using this script I have performed an
uncorrelated fit to the L = 24 ensemble from time slice 14 to 47 because the data
shows a plateau there. The covariance matrix could not be estimated properly
using the limited amount of noisy point source correlation functions available,
therefore an uncorrelated fit was performed.

It can already be seen by eye from the plots shown in Figure 3.9 that our mass
of 0.1533(16) is significantly lower than the 0.169(1) quoted by the Budapest-
Marseille-Wuppertal collaboration [57]. This indicates that the altered bare strange
quark mass has a significant effect on the pion mass. Our error is likely underesti-
mated, still the difference is very large in terms of our error.

5The errors on the masses in this analysis as well as the ones in the reference are assumed to be
Gaussian. In order to check the null hypotheses, that computed masses come from the same
underlying distribution, a two-tailed Z-test can be performed. The test statistic is computed as

Z =
X − Y
Æ

s2
X + s2

Y

,

where sX is the standard error of the variable X . The scores are zπ = 0.0278 and zK = 0.0174. One
can say that masses for the pion agree to 0.028σ, where σ is the combined standard error from
the above denominator. A probability for the equality of the underlying distribution can also be
computed: The masses obtained here could be equally likely larger or smaller than the reference,
therefore this is a two-tailed case. The p value therefore is given by p = erf(|z|) + 1− erf(−|z|)
where erf is the cumulative density function of the normal distribution, the error function.
Therefore the probability that the simulation in this work reproduces the reference mass is
pπ = 0.978 and pK = 0.986, respectively.
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The error estimation is done with the bootstrap method: From set S of the N
configurations, take N configurations with replacement, this yields the set S∗1. The
exact same analysis can be done with the N configurations of the set S∗1, yielding
(aMπ)∗1 and a kaon mass. This is repeated until S∗3N is obtained. The mean of
all effective masses (aMπ)∗i lies close to the value aMπ which is obtained with
the actual data. The standard deviation of the (aMπ)∗i gives an estimate for the
statistical error in the quantity aMπ.

In the analysis here, the fit ranges are chosen by eye such that the effective mass
agrees with a constant within the statistical errors. A more thorough approach
would not fix the starting point of the fit but rather perform all possible fits. Each
fit would have an associated χ2 value characterizing the quality of the fit. Via
the cummulative density function of the χ2 distribution, a so called p-value can
be computed6. It gives the probability that another data sample would give a χ2

that is greater or equal than the one in question, if the data is indeed explained
by the model. A high p-value implies that the data can be explained by a single
mass state, therefore that the fit range is sufficiently narrow around T/2. The
effective mass extracted from each fit can be added to a p-weighted distribution.
The quantiles of that distribution then give the best value and an estimation of the
systematic error due to the fit range selection. This preliminary mass extraction
is just a check whether the simulation yields the expected results. Later on more
advanced analysis techniques will be used.

3.8. Scale Setting

Although one would expect to know the lattice spacing in physical units when
running a simulation, the lattice spacing has to be measured afterwards. Renormal-
ization effects change the lattice spacing. One has to measure a physical quantity
in lattice units and relate that to the experimentally known value in physical
units. One possibility is to measure aMΩ, a dimensionless quantity. Using the
experimentally known physical value of MΩ in MeV, one can extract a in MeV or
fm.

The complication with this approach is that it is only valid for physical masses
and in the continuum limit, a→ 0. Tuning the bare mass parameters such that
the mesons obtain physical values will increase the condition numbers in the
inversions and make it much more compute intensive, at least with algorithms like

6p = 1− Fχ2(χ2)
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conjugate gradient. Reducing the lattice spacing will have to go with an increase in
lattice points, although a = 0 of course can never be reached in a simulation. One
therefore performs the simulation at a few different masses and a few different
lattice spacings. Extrapolating both to the physical point then allows to compare
the lattice measurements with experimental measurements.

Setting the scale for a single simulation without the extrapolation will have signifi-
cant systematic errors. Using an observable which has a lesser dependence on the
lattice spacing and quark masses is an improvement. The Wilson flow has been
suggested as a scale by Lüscher [76]. From the gauge fields Aµ a field Bµ ∈ SU(Nc)
is derived by solving the defining equations of the flow are

Ḃµ = DνGνµ , Bµ(0) = Aµ ,

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν] , Dµ = ∂µ + [Bµ, · ] .

They are used to integrate the gauge field into a new flow direction which is inde-
pendent of physical or molecular dynamics time. Chroma has this measurement
implemented, an example input file can be found through Section A.1.3. The
implementation can leverage the stout smearing because the derivative of the
lattice is exactly the exponent in the smearing. Infinitesimal stout smearing steps
are combined with a Runge-Kutta integrator to yield a high-order integration of
the differential equation.

On each configuration the gauge action E(t)∝ 〈GµνGµν〉 is computed using the
clover definition of the gluon field strength tensor. The resulting quantity 〈E(t)〉 is
shown in Figure 3.10 for a particular configuration.

The quantity t2〈E(t)〉 will grow linearly with the flow time, as can be seen in
Figure 3.11a. If the configuration is not yet thermalized, it might have a maximum
and vanish for very large flow times. In that case it does not make much sense
to set the scale, therefore this is not a problem. The proposed scale setting [76]
works as follows:

1. Integrate the flow equations and compute 〈E(t)〉.
2. Compute t2〈E(t)〉.
3. Find the time t0/a

2 where t2
0〈E(t0)〉= 0.3.

Another improvement has been suggested by the Budapest-Marseille-Wuppertal
collaboration [77]. Here the scale setting quantity is not t2〈E(t)〉 but t2 d

dt 〈E(t)〉.
It shows a similar linear increase with t as shown in Figure 3.11b. They quote the
continuum value as w0 = 0.1755(18)(04) fm which they obtained by computing
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Figure 3.10.: Expectation value of the gauge action density versus flow time. Com-
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Figure 3.11.: Derived quantities for scale setting.
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the quantity w0/MΩ on ensembles with different lattice spacings and quark masses
and extrapolated to the continuum limit with physical quark masses. Therefore
it is not directly comparable with our simulations at finite lattice spacing and
unphysical quark masses. However, this quantity shows only mild dependence
on the lattice spacing and the quark masses. It is expected that one can compute
a/w0 from the available configurations and then get an estimation of a that is
good within perhaps 15 %.

The scale w0/a has been computed for some of the early configurations in the
small and medium ensemble. Using the continuum value of w0 one can compute
the value a−1 for each configuration, shown in Figure 3.12. The resulting values
of very roughly 1470 MeV and 1250 MeV are much smaller than the quoted value
of 1616(20)MeV [57] for our ensemble. The deviation is likely a systematic effect
because we did not extrapolate our w0/a to the continuum. The chiral perturbation
equation given in their paper needs more different mass parameters in order to get
a good estimate of the fit parameters. For our analysis we only use the published
value because its accuracy will be superior to the calculated values.

3.9. Perambulators and Mass Extraction

The preliminary analysis of the pion and kaon mass in Section 3.7 was done using
point sources and one inversion per color and spin component. There was no
smearing used besides the six iterations of stout smearing that are part of our
fermion–gauge interaction. The gauge configurations contain various energy states
which will contaminate the signal in the pion mass measurement. For the lightest
mesons, we would like to suppress the high frequency modes in order to get a
better signal of the ground state.

3.9.1. Laplace Heaviside Smearing

The Laplacian Heaviside (LapH) quark smearing scheme [78] in the stochastic
variant [79] has been used in the more advanced analysis of the data. This section
will follow Morningstar et al. [79]. In summary, the method reduces the gauge
configuration to its lowest eigenmodes in terms of the Laplace operator. First one
smears the spatial gauge links. The authors use stout smearing, we have used
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Figure 3.12.: Computed scale using the w0 scale for two ensembles. The
top curve corresponds to the sWC_A2p1_Mpi270_L24T96 ensemble,
configurations before 500 are not considered thermalized, large
changes and trends are expected. The bottom curve is from the
sWC_A2p1_Mpi660_L16T32 ensemble and shows longer autocorre-
lation time, larger fluctuations and a significantly lower value of
a−1. No error bars are shown because the w0/a measurement on
each configuration has no error estimate and the error on w0 itself is
quoted at the percent level.
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HYP smearing [80] instead.7 Then the eigenvectors and eigenvalues (all real and
negative) of the gauge covariant discreticed Laplacian operator are computed on
these gauge configurations. Let V4 be the matrix of eigenvectors and Λ4 the
matrix of eigenvalues. Then the Laplacian using the smeared fields can be written
as 4̃= V4Λ4V†

4. We are only interested in the lowest eigenmodes, therefore we
only keep the most negative eigenvalues by constructing a smearing operator S
(script “S”) such that

S = V4Θ(σ
2
s +Λ4)V

†
4 .

The Heaviside step function Θ will yield a diagonal matrix with ones where eigen-
values have smaller magnitude than the threshold σ2

s and zeros otherwise. We
can discard the unused entries from V4 and name this non-square matrix Vs. It
maps from the LapH space to the physical space:

Vs : Eigenvectors⊗ Time→ Space⊗ Time⊗Color .

The Laplacian does not act along the temporal direction and therefore is diagonal
in time. There are independent eigenvectors for each time slice. Therefore one
could also state the above as Vs(t): Eigenvectors→ Space⊗ Color. The original
authors have observed that the number of vectors that are selected by the Heaviside
function varies by one or two when the number of eigenvectors Nv is greater than
60. Therefore one can fix the number of eigenvectors for all time slices without
losing or gaining many eigenvectors. This allows to store Vs as a rectangular
array of Nv Lt columns and L3

s LtNc rows. The smearing operator can be written as
S = VsV

†
s . The authors state an optimal value of σ2

s ≈ 0.33 which is supposed to
be insensitive to the choice of hadron operator and parameters like quark mass
and lattice spacing.

Instead of using the actual propagator M−1, one uses the “quark line” Q (script
“Q”) which is smeared:

Q = S Ω−1S = Vs (V
†
sΩ
−1Vs)V

†
s .

Ω is γ4M which is stated as useful to ensure hermiticity in baryon correlation ma-
trices. Instead of storing the full tensor Ω−1, one only needs to store the expression
in parentheses. For the 243 × 96 lattice, the full one-to-all propagator would need

7Apparently the exact nature of the smearing is not important, it just needs to sufficiently remove the
high-frequency modes. In the development of the software used (peram_gen), a cross-checked
implementation of HYP smearing was already available, so this was used.
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13824 spatial volume elements. This is reduced to Nv = 120 eigenvectors, this is
a saving factor of around 115. Still the Dirac structure is preserved such that all
sorts of correlation functions can be computed with a given set of quark lines.

3.9.2. Stoachstic LapH (sLapH)

The LapH method introduced so far allows storing less data and making less inver-
sions. However, the number of needed inversions is still quite high. If one would
do all these inversions, the limiting factor would be the gauge noise introduced by
the way that the configurations are generated. Therefore Morningstar et al. [79]
claim that it is sufficient to compute stochastic inverses. The following will be a
summary of their stochastical Laplace-Heaviside method, “sLapH”.

The inverse of the large matrix Ω can be stochastically inverted by taking standard
normal random noise vectors η such that their expectation value vanishes, E(ηi) =
0, and have no correlation, E(ηiη j) = δi j. For each such noise vector ηr one
solves the equation ΩX r = ηr . An estimate of Ω−1 is then given by

Ω−1
i j ≈

1
NR

NR
∑

r=1

X r
i η

r∗
j , (3.2)

where NR is the number of random noise vectors used. The estimate is not a good
one because the variances are very large.

Dilution of the noise vectors will reduce the variance in the propagator Ω−1.
The dilution process can be expressed in terms of a complete set of orthogonal
projection operators P(b). These are diagonal matrices that only contain ones
and zeros, effectively selecting certain components from vectors into the diluted
element b.

Figure 3.13 illustrates the four dilution schemes. Projecting the N elements of a
space into a single element is called “no dilution” (Figure 3.13a) because the result-
ing vectors still contain all their components. Projecting each vector component
onto a separate element is named “full dilution” (Figure 3.13b) as each compo-
nent is separated. Projecting adjacent components onto one element such that J
elements remain is called “block-J” dilution (Figure 3.13c). A mapping based on
the modulo is called “interlace-J” dilution (Figure 3.13d). Unfortunately people
either mean that the result has J blocks or that J source blocks are averaged into a
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Figure 3.13.: The dilution schemes as introduced by Morningstar et al. [79]. Map-
ping from original space (squares) to the dilution blocks (circles).
The original space has eight elements in this illustration.

single result block when they say “block-J”. Therefore it is best to be unambigious
and call it “block dilution into J blocks” or “block dilution with block size J”.

Inserting two full sets of such projection operators
∑

b P(b) into the estimate of
Ω−1

i j from Equation (3.2) gives

Ω−1
i j ≈

1
NR

NR
∑

r=1

∑

b,b′
(P(b)ik X r

k)(P
(b′)
jl η

r∗
l )

1
=

1
NR

NR
∑

r=1

∑

b,b′
(P(b)ii X r

i )(P
(b′)
j j η

r∗
j )

2
=:

1
NR

NR
∑

r=1

∑

b,b′
X r[b]

i η
r[b′]∗
j

3
≈

1
NR

NR
∑

r=1

∑

b

X r[b]
i η

r[b]∗
j .

In the additional steps, the following has been done:

1. The projection operators are always diagonal matrices containing only 1 and
0 entries. Therefore one can directly remove one index in each parentheses
to make it easier to reason about the expression.

2. In the original paper the authors introduce a shorthand notation for the pro-
jected vectors. This is also introduced here in this step. Since the projectors
are diagonal, the only difference between the original vector and the diluted
one is that certain elements are replaced with zeros.

3. This last step is the most important one and gives rise to the power of dilution.
Only terms that correspond do the same projector b is kept, mixed terms
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are discarded. In the case of no dilution this does not change anything
because b = b′ = 1 was the only available dilution element. For full dilution,
the projectors are δi b and δ j b′ . By setting b = b′, we effectively insert
a δi j which lets all off-diagonal components of Ω−1 vanish exactly. The
block and interlace dilution schemes are a mixture of both, preserving a few
off-diagonal elements of the propagator Ω−1.

The stochastical estimation of the propagator is best done with diluted random
noise vectors in the LapH space. This lets one rewrite the quark line introduced
above in terms of a standard normal noise vector in LapH space ρ with E(ρ) = 0
and E(ρρ†) = 1:

Q = S Ω−1S 1
= S Ω−1VsV

†
s

2
=
∑

b

S Ω−1VsP
(b)P(b)†V†

s

3
=
∑

b

S Ω−1VsP
(b)E(ρρ†)P(b)†V†

s

4
=
∑

b

E
�

S Ω−1VsP
(b)ρ

︸ ︷︷ ︸

ϕ[b](ρ)

(VsP
(b)ρ
︸ ︷︷ ︸

%[b](ρ)

)†
�

.

The various steps do the following:

1. The second dilution operator S is expanded in terms of its definition.
2. A unity in form of a full set of projection operators is inserted.
3. Another unity in form of the expectation value is inserted.
4. The terms are regrouped in a suggestive way, the expectation value expanded

around the whole expression.

The quantities %[b](ρ) and ϕ[b](ρ) are called displaced-smeared-diluated quark
source and sink vectors. In the original papers the authors also include a displace-
ment which is not used in this work here.

In order to store the minimal amount of data, one stores the eigensystem Vs, the
random vectors ρ r and the perambulators V†

sΩ
−1VsP

(b)ρ. One does not store the
smeared-diluted quark sink ϕ[b](ρ) because it is a vector in the physical space
(and not LapH space) and therefore much larger.

Quark lines can then be build up from these parts and are given by

Quv ≈
1

NR

NR
∑

r=1

%[b]u (ρ)ϕ
[b]
v (ρ)

∗ .
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The pion correlation function is build up from two quark lines and is given by

Cl l̄(t) = c(l)
αβ

c(l̄)∗
ᾱβ̄

∑

x x̄

e−ip·(x−x̄ )
D

−Q(ĀA)
āᾱ;aαQ

(BB̄)
aβ;āβ̄

+Q(BA)
aβ;āᾱQ

(ĀB̄)
āᾱ;aβ

E

,

where c is combined group subduction coefficient and a Dirac (Γ ) structure and
further

u, v are compound indices for space, time, color and spin;
B is the source flavor;
A is the sink flavor;

α, β are Dirac spin indices; and
l, l̄ are compound indices for momentum p, symmetry group irrep Λ, row λ of

the irrep, and symmetry channel.

In the whole analysis from gauge configuration generation to an effective mass,
a lot of intermediate steps need to be done. Figure 3.14 shows a graph with
the steps and intermediate results. The gauge configurations are generated with
Chroma and then also stored as stout smeared configurations. The eigensystems
are generated using “LapH_EigSys” [81]. The perambulators are then generated
using “peram_gen” [82]. There are two implementations of the contraction code,
implementation W [83] and L. These produce correlation functions, one can also
directly create correlation functions without the LapH technique using Chroma or
tmLQCD. Correlation functions can be then be analysed with various packages,
like implementation H [72], U [84] and L.

3.9.3. Improved Meson Masses

The pion mass that was shown in Figure 3.9 has been obtained from correlation
functions that were calculated using point sources in Chroma. In the variant
with the exponential solve definition of the effective mass, the points still fluctuate
around the fit band significantly.

A much better signal is obtained by extracting the correlation functions from the
perambulators. The excited states will be suppressed to reduce noise and give
a better plateau. Liuming Liu has done the necessary contractions to yield the
correlation functions. The corresponding effective mass in the exponential solve
definition is shown in Figure 3.15 where you can directly compare with the point
source data from Figure 3.9.
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Figure 3.14.: Various ways to extract observables from the generated gauge con-
figurations. Rectangles represent data, filled rounded rectangles
represent programs that work with the data.
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Figure 3.15.: Effective pion mass on the L = 24 ensemble with the exponential
solve definition. The upper plot shows the same data as Figure 3.9
that has been generated using point sources on 221 configurations.
The data in the lower plot is generated using perambulators on 186
configurations. The shaded box shows the one standard error band
of an uncorrelated fit to the correlators using the R-hadron package.
One can see the effectiveness of the excited state removal.



3.9. Perambulators and Mass Extraction 61

Due to the drastic reduction in noise compare to the point sources, the fits can
start at t = 11 (or even earlier) as opposed to t = 14. The effective mass from
the point source is aMπ = 0.1534(16), whereas a similar fit using the correlation
functions from the perambulators gives 0.1553(10). The errors are likely incorrect
since the fits are uncorrelated. Even with the excited state removal, the correlation
matrix cannot be estimated properly and fails to be inverted.

3.9.4. Scattering Length

Beyond the masses of the pions, one can also look at pion scattering on the lattice.
Due to the imaginary time, extraction of scattering quantities is a bit different
from usual quantum field theories in Minkowski space. One measures a two-point
function which is the pion–pion correlation function from above. The exponential
decay of the correlation is driven by the particle mass m. For the scattering one
also computes four-point correlation functions of the form 〈π(t)π(t)π(0)†π(0)†〉.
The exponential decay factor will be the interacting energy E4pt of the two particles.
The energy difference, the binding energy, will depend on the lattice volume L as
described by Lüscher [85]. His formalism relates the two energies to the scattering
length as

2m− E4pt =
4πa0

mL3

�

1+ c1
a0

L
+ c2

a2
0

L2

�

+O(L−6) , (3.3)

where c1 = −2.937297 and c2 = 6.375183. For given two-point and four-point
energies, the equation is solved numerically for a0, which is the S-wave scattering
length.

The scattering length can be determined in different isospin channels, two pions
can couple to I = 0, 1, 2. Liuming Liu has run her I = 0 analysis [86] on the new
gauge configurations and determined the S-wave scattering length to be

MπaI=0
0 = 1.10(36).

The large error likely stems from the small number of configurations that went
into this analysis. In the future we plan to generate more configurations and do
a more thorough analysis for the scattering. This new data point can be related
to the existing data [86] and is shown in Figure 3.16. The Mπ/ fπ value has been
estimated using chiral perturbation theory, therefore it is not as accurate as the
measured values on the other two points.
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Figure 3.16.: New data point (marked with circle) together with the previous data
and fit from Liu et al. [86].



4. Extending QPhiX

The most expensive part of a lattice QCD simulation is the inversion of the fermion
matrix M in the HMC. The inversion has to be done for each time step in the
molecular dynamics step. There are somewhere between 10 to 100 time steps for
each Markov chain step. For a typical simulation we want to have in the order
of 5000 Markov updates. The computation of correlation functions needs more
inversions, each point source propagator needs twelve inversions, perambulators
even more.

A lattice spinor ψ defined on a lattice has spin and color elements on each site.
These are complex numbers, which each take 16 B to store in double precision.1

On a modest 323 × 96 lattice, the needed memory for a spinor therefore is

323 · 96 · 4 · 3 · 16B= 576MiB .

The inverse matrix M−1 would then require

(323 · 96 · 4 · 3)2 · 16B= 20.25PiB .

For a 643 × 128 lattice, this would be 2.25 EiB. Both sizes exceed the size of any
computer memory by far, it is unfeasible to store the inverse matrix. This excludes
algorithms like Gaussian elimination where the inverse matrix has to be stored
during the computation.

The force computation in the molecular dynamics does not really require M−1, only
the result of M−1ψ has to be computed. Therefore it is sufficient to compute the
spinor χ defined by the equation Mχ =ψ. Krylov subspace solvers like conjugate
gradient [36] can provide a solution without having to store M−1. They only need
memory for a few spinors, which is readily available. This class of solvers works
by repeatedly applying the matrix to the vector. Therefore one needs to have a
fast matrix–vector multiplication.

1In the following, the unit “B” stands for “byte” and 1MiB for 10242 B, which is approximately
10002 B= 1MB. Similarly 1 PiB= 10245 B and 1EiB= 10246 B.
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The kinetic operator M consists of a local and a hopping part. The local part
contains the mass, twisted mass, and the clover term. The hopping part stems from
the discretized derivative which links nearest-neighbor lattice sites. In the operator
M†M , the hopping will link next-to-nearest-neighbors together. Thinking about
the spacetime structure of M , it will consist only of a handful of diagonals (from the
bulk) and some non-zero values on the edges (from the boundary conditions). It is
a very sparse matrix, therefore the multiplication Mχ really is a stencil operation.
This name is given to update procedures where the new value of an array element
only depends on the value of the neighboring values.

Sparse matrix multiplications suffer from low arithmetic intensity. This is the ratio
of floating point operations done and the number of bytes transferred. Modern
CPUs with high clock speeds require a large arithmetic intensity in order to be
saturated with computations. The sparse multiplication Mχ will be memory
bandwidth bound on current high performance platforms. Therefore a lot of
optimization is needed to gain performance.

The QPhiX library [87] by the USQCD collaboration provides fast solvers that
can be used in HMC packages like Chroma or tmLQCD. In the following sections
the library will be introduced and added features described. For a more detailed
introduction to QPhiX see the master thesis of Peter Labus [88].

4.1. Code Generator

QPhiX targets Intel Xeon processors and Intel Xeon Phi coprocessors. This type of
hardware is currently very common in high performance systems. The “JURECA”
system in Jülich (Germany) and the “Hazel Hen” system at HLRS in Stuttgart
(Germany), use Intel Xeon E5-2680 v3 Haswell [89] processors, two per mainboard.
These support the AVX2 instruction set architecture (ISA).

The A2 partition of the “Marconi” system at CINECA in Casalecchio di Reno (Italy),
uses Intel Xeon Phi 7250 [90] processors. They are also called Knights Landing
(KNL) and are the successors of the Knights Corner (KNC) PCIe cards. The KNL
processors support the AVX512 instruction set architecture. Other KNL machines
are “DEEP-ER” in Jülich, “Frioul” at CINES in Montpellier (France) and “Cori” at
NERSC in Berkeley (USA). The “JURECA” system will be extended with a KNL
booster soon. An introduction to the KNL architecture can be found in the talk by
Duran [91].
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Both architectures have rather long SIMD vector lengths (256 bit and 512 bit)
and a two-digit core number (12 and 72). Both support SMT, the Xeon has two
hyperthreads, the KNL has four hardware threads. Both Xeon and Xeon Phi use
the x86 architecture, they can run “normal” programs. The Xeon Phi is Intel’s
competitor to NVIDIA’s Tesla PCIe cards. The KNL is a bootable CPU and therefore
does not suffer from the host–device transfer limitations that the PCIe cards exhibit.
Also one has access to the whole host memory due to the homogeneous architecture.
Another selling point of the KNL is the ability to run any x86 code directly. This
should attract scientist with large legacy code bases that cannot be rewritten using
CUDA in a feasible way. In reality, obtaining significant performance on KNL needs
a lot of programming effort which seems comparable to the writing of GPU code.
Therefore it does not seem to make a large difference in terms of effort for lattice
QCD applications.

For best performance, it is desirable to exploit the specific ISA and make use of the
full SIMD length. Each ISA has different intrinsic functions that the C++ compiler
will translate to special machine instructions, an overview of Intel intrinsics can be
found in Reference [92]. There is no simple way of writing a single code that is
then compiled into the correct intrinsic functions. Compilers might unroll loops
into SIMD instructions, but they tend to be conservative. OpenMP supports a simd

directive, but that is not sufficient. The data structures have to be tailored for the
SIMD length such that similar elements are packed closely together and allocations
are aligned properly. Alignment means that memory addresses are cleanly divisible
by the vector length.

In QPhiX these problems are addressed via a code generator. This is a program
that generates C++ code files containing the stencils (also called kernels). These
are then wrapped with higher level code that uses those kernels to build Krylov
solvers. The generated code does not contain loops over matrix indices. It is a flat
stream of instructions that use the intrinsic functions for a particular ISA.

In the code generator, the kernels are composed from C++ objects that represent
the instructions. The CPU has instructions for adding and subtracting vectors,
there are instructions like ax + y (axpy or fused multiply add). Also there are
prefetches that can load a certain region of memory into the L1 or L2 cache. The
registers in the CPU are also represented by C++ objects. A kernel then consists
of a list of these instruction objects, working on register objects. This makes the
kernel code readable and portable. To generate the fastest possible axpy operation,
one writes the following in the code generator:

fmaddFVec(ivector, Ret, A, X, Y, mask);
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Architecture Generated Code

Scalar ret = (a * x) + y

AVX ret = _mm256_add_pd(_mm256_mul_pd(a, b), c)

AVX2 ret = _mm256_fmadd_pd(a, x, y)

AVX512 ret = _mm512_fmadd_pd(a, x, y)

Table 4.1.: Generated code for the supported architectures to perform the axpy
operation.

The ivector is an std::vector of instruction objects which will be written to
a file at the end. The next four parameters are C++ objects representing the
variables to be used in the computation. The mask is an optional parameter that
can exclude certain elements of the SIMD vector from the computation. For each
ISA, there are different bits of C++ generated.

The various generated lines are listed in Table 4.1. On the scalar architecture we
cannot use any special functions and generate a regular operation. AVX supports
256 bit intrinsics, so we can use a SIMD multiplication and addition. AVX2 in-
troduced the fused-multiply-add, therefore only a single instruction needs to be
generated. For the AVX512 target, the same instruction objects generates a 512 bit
fused multiply add of packed doubles.

Loops in the code generator are evaluated during the generation of the kernels.
The generated code will not contain any loops over color and spin indices, but
rather a block of 12 similar looking instructions next to each other. This reduces
runtime overhead and improves the performance for compute bound parts of the
kernel. Having the complete stream of instructions available in the code generator
also means that one knows exactly when each variable is accessed. In a second
code generation step, explicit software prefetches to the L1 and L2 cache can be
interspersed with the computations, allowing to reduce the effects of memory
latency. This was needed for the KNC architecture, the KNL architecture has much
better hardware prefetches so that we do not utilize the software prefetches any
more.

The code generator allows writing kernel functions in an abstract way but yet
obtain ISA specific intrinsics code. Once all elementary instructions have been
implemented for one ISA, all kernels can be generated for that ISA without any
change to the code describing the kernel. This make adoption of a new architecture
much easier while still retaining great performance.
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Figure 4.1.: Blocked data layout used in QPhiX. The original lattice (dotted grid)
is divided into tiles (thin grid) and blocks (thick grid). Adapted from
Joó et al. [87].

4.2. Data Layout

In order to use SIMD capabilities in a program, the data layout has to be chosen
in terms of SIMD vectors. Different architectures have different SIMD lengths,
therefore the data layout has to be sufficiently flexible. On an AVX512 platform
in single precision, we need 512/32= 16 elements in a SIMD vector. The SIMD
vector length in terms of the chosen floating point type is called veclen in the
program. For AVX, it takes the value 8. In double precision, the length is halved.

The SIMD vector index must be the fastest index of the data structure. For a spinor
field, the natural choice of the fastest index would either be the spin or color index.
However, the range of that index is always fixed and does not give the needed
flexibility. Therefore QPhiX uses a data layout where part of the x-dimension is
used as the fastest index.

Figure 4.1 illustrates the partitioning of the lattice which works as follows. The
x-dimension is divided into chunks of length soalen, which is a divisor of veclen.
In this example, we have soalen= 4 and veclen= 8. In the figure, two chunks
of a single vector are shown as differently shaded areas. A number ngy of chunks
is combined into a tile which has soalen · ngy = veclen elements. This tile is
then used as a SIMD vector. In the figure the tiles are delimited with thin solid
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lines.

This combination of x and y direction in a single SIMD vector is called vector
folding. The “Dslash” operation connects nearest neighboring lattice sites together,
therefore it appears advantageous to load neighbors in both x and y with a single
SIMD vector. Pushing this concept further to include z and t could be done;
sending and receiving lattice sites to a neighboring process will require unpacking
and packing in all directions then. QPhiX only has x and y directions partially
folded, therefore communication along z and t can be done with full SIMD vectors
without repacking. This explains the dependence of the performance on the domain
decomposition as shown in Table 3.3.

The soalen parameter needs to be tuned for the particular machine to find the
best performance. A number of tiles is grouped together to form a block, as
indicated with thick solid lines. The blocks are loaded into the cache one at a time.
Depending on the cache sizes, different block sizes provide optimal performance.
The z-direction is divided into blocks of length Bz. The time direction is not divided,
each block contains the full time extent.

The four-spinor fields have a slightly different memory layout. Their fastest index
does not loop over veclen but only soalen elements. Multiple different spinors are
loaded at the same time and then are ordered with permute and shuffle instructions.
Effectively this means that the x and y coordinates are split into three indices of
the data structure.

The definitions of the data structures is done in the Types class. The spinor and
gauge fields are defined as follows:

typedef FT FourSpinorBlock[3][4][2][soalen];
typedef FT TwoSpinorBlock[3][2][2][veclen];
typedef FT SU3MatrixBlock[8][(compress12 ? 2 : 3)][3][2][veclen];

The type FT is the floating point type. The indices for the spinor blocks are color,
spin, complex, and the SIMD index.

The gauge field has one direction index with range 4. As introduced in Figure 2.1,
there are four forward gauge links Uµ(n) and four backward gauge links Uµ(n)†.
The link from n to n + µ̂ is stored on lattice site n. However, the link from n to
n − µ̂ is stored on lattice site n − µ̂. The Dslash stencil operation needs to have all
eight gauge links pointing away from a given lattice site. The gauge field does not
change during the solving of Mψ = χ , therefore memory latency impact is reduced
by copying the gauge field from n − µ̂ to n. In total, there are then eight gauge
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fields on each lattice site, hence the range 8 of the first index. QPhiX does not use
hermitian conjugated backward links, rather the multiplication routines conjugate
it on the fly. Therefore the gauge field is simply duplicated and distributed to other
lattice sites.

The next two indices for the gauge field are the color indices. Since the arithmetic
intensity is low, additional compute cycles are “free” while waiting for data from
memory. A SU(3) matrix only contains eight real degrees of freedom. Storing the
full matrix naively requires nine complex numbers, that are 18 real numbers. The
matrix exponential or other decompression techniques that are needed to retrieve
the matrix from only eight parameters are too expensive. It will require more
compute cycles than are available for free, becoming the new bottleneck. On GPUs,
the needed arithmetic intensity is higher, therefore it might make sense to use
these there. For KNL, a good compromise is the compression to 12 real parameters.
The last row of the matrix is discarded and reproduced on the fly. The second last
index spans real and imaginary part, the last index is the SIMD index, as usual.

Twelve parameter gauge compression works as follows. One discards the last row
vector of the matrix




a1 a2 a3
b1 b2 b3
c1 c2 c3



→
�

a1 a2 a3
b1 b2 b3

�

to save memory bandwidth and then reproduces this with a vector product inside
the kernels, c = (a× b)∗. This is the gauge compression available in QPhiX.

The four parameters describing the data layout, floating point type (typename
FT), vector length (int veclen), soalen (int soalen), and a flag for gauge com-
pression (bool compress12), are used as C++ template parameters throughout
the codebase. Their naming unfortunately is not completely consistent, their order
is the always same, though.

As hinted at earlier, multiple slices in the y direction are grouped into blocks. The
same is done in the z direction also. These blocks in y and z are distributed evenly
to the available cores. As long as there are at least as many blocks as threads,
every threads gets one block assigned to it as indicated with shading in Figure 4.2a.
Blocks are assigned with the full x and t extent. At some point, there might be
fewer blocks than cores. The t direction is split such that there are at least as
many blocks as cores again, see Figure 4.2b. In order to prevent splitting into
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Figure 4.2.: Parallelization in 3.5 dimensions shown with four threads and six
blocks. Adapted from Joó et al. [87].

miniscule work packages, the splitting is halted after a few iterations and cores
are left idling.

Between rounds of distributing blocks to cores, one can enable a thread barrier
that synchronizes all threads. Usually barriers are known to decrease performance
because they force threads to idle. Contrary to intuition they can give a slight
performance increase on certain architectures because they synchronize memory
accesses. This improves data sharing and therefore bandwidth usage because the
threads do not drift apart too much. On the KNL platform we do not see any
benefit, they are disabled by default.

4.3. Implementing Non-Degenerate Twisted Mass

QPhiX is written exclusively with even-odd preconditioning. It provides a solution
to M̃ooψ = χ, given Moo and M−1

ee as external arrays.2 In the chapter on lattice
theory we have introduced the preconditioned operator in Equation (2.11) with
d := α2 +µ2 − ε2:

M̃oo =

�

α+ iµγ5 −
1

4d /Doe(α− iµγ5)/Deo −ε− ε
4d /Doe /Deo

−ε− ε
4d /Doe /Deo α− iµγ5 −

1
4d /Doe(α+ iµγ5)/Deo

�

f

.

2In the American notation one uses A instead of Moo and A−1 instead of M−1
ee . Within QPhiX, they

are usually called clov and invclov.
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Previously, QPhiX worked only with single flavor fermion fields. Therefore only
the upper left part of this matrix has been implemented,

M̃uu
oo = α+ iµγ5 −

1
4d
/Doe(α− iµγ5)/Deo .

The subscript indices are the checkerboard indices (even and odd), the superscript
indices are the flavor indices (up and down; alternatively charm and strange). In
the general case (potentially with clover term) this would be written as

M̃uu
oo = Muu

oo −
1
4
/Doe(M

−1
ee )

uu
/Deo .

The application of this operator to a spinor field needs two applications of the
hopping matrix D which connects neighboring lattice sites. In QPhiX, these two ap-
plications are implemented in two separate steps such that only an implementation
of the hopping matrix is needed and only a one element thick boundary needs to
be communicated between the MPI ranks. The first part is the “Dslash” operation3

which computes ψu
e = (M

−1
ee )

uu
/Deoχ

u
o . Then the “achimbdpsi” (αχ −β /Dψ) opera-

tion uses this intermediate result and computes Muu
ooχ

u
o − β /Doeψ

u
e = M̃uu

ooχ
u
o .

The original authors of QPhiX, Joó et al. [87], have implemented Wilson and
Wilson clover fermions. This has been extended to Wilson twisted mass fermions
by Schröck, Simula, and Strelchenko [93]. My colleague Peter Labus [88] has
further extended QPhiX to include the twisted mass clover case µ 6= 0. As part of
this this work I have extended QPhiX to the non-degenerate case (ε 6= 0) with help
from my colleague Bartosz Kostrzewa.

In order to reuse as much of the existing code as possible, we express the non-
degenerate operations in terms of the degenerate ones which are already imple-
mented in QPhiX. We will first treat the non-degenerate Wilson twisted mass case
without a clover term. The application of the even-odd preconditioned operator
on a two-flavor spinor field is explicitly given by

(M̃ooχo)
u =
�

α+ iµγ5 −
1

4d
/Doe(α− iµγ5)/Deo

�

χu
o −
h

ε+
ε

4d
/Doe /Deo

i

χd
o

(M̃ooχo)
d =
�

α− iµγ5 −
1

4d
/Doe(α+ iµγ5)/Deo

�

χd
o −
h

ε+
ε

4d
/Doe /Deo

i

χu
o .

3The naming convention is a bit unfortunate. The “Dslash” operation in QPhiX always means a
hopping matrix with M−1

ee included, so the operation is M−1
ee /Deo, whereas “Dslash” is also often

used as another name for the hopping matrix alone.
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The first bracket contains the “achimbdpsi” operation in the Wilson twisted mass
case. For the down-flavor, the sign of the twisted mass µ is flipped. The second
bracket can be interpreted as a Wilson “achimbdpsi” operation with appropriately
set α and β . The two intermediate results would need to be subtracted from each
other to give the final results. This method needs eight applications of the hopping
matrix and therefore is more expensive than needed.

Instead, the following variant has been chosen:

1. First the Wilson “Dslash”, which is just the hopping matrix, is applied to both
flavors of the spinor, /Deoχ

u
o and /Deoχ

d
o .

2. A newly written routine multiplies the intermediate results with α∓ iµγ5
and stores that in another temporary spinor.

3. This spinor is then used as input in the Wilson twisted mass “achimbdpsi”
operation to yield the first brackets indicated above.

4. The result from step “1” is used in the Wilson “achimbdpsi” operation to
yield the second brackets.

5. A BLAS routine subtracts the two parts in each flavor and stores the results
into the final spinors.

This approach only needs six applications of the hopping matrix and should be
faster because it needs fewer memory accesses. The gauge field is still streamed
from memory once for each flavor. It might be faster to generate kernels that
directly do the “Dslash” operation on two flavors at once. This way, the gauge
(and clover) fields need to be streamed through only once. This would need new
two flavor kernels that need to be generated in the code generator. Also the data
structures would need to be changed in order to hold multiple flavors. If the
performance of the current implementation is not sufficient, these optimizations
could be implemented and tested against the each other. These significant changes
are beyond the scope of this work and might be taken up in a future work.

The Wilson twisted mass clover operator works analogously. Since the clover
term cannot be inverted analytically, one cannot decompose it as nicely. The most
explicit form of the operator is given by

M̃oo =

�

α+ iµγ5 + cSWToo
α− iµγ5 + cSWToo

�

f

− ετ1 −
1
4
/DoeM−1

ee /Deo .

The matrix M−1
ee is non-trivial in flavor, all four submatrices in flavor space will

potentially be non-zero. We can regroup the terms such that the first term can be
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evaluated with previously existing functionality and a the second term needs new
routines.4 We obtain

(M̃ooχo)
u =
�

α+ iµγ5 + cSWToo −
1
4
/Doe(M

−1
ee )

uu
/Deo

�

χu
o

−
�

ε+
1
4
/Doe(M

−1
ee )

ud
/Deo

�

χd
o

(M̃ooχo)
d =
�

α− iµγ5 + cSWToo −
1
4
/Doe(M

−1
ee )

dd
/Deo

�

χd
o

−
�

ε+
1
4
/Doe(M

−1
ee )

du
/Deo

�

χu
o .

While the first bracket is the Wilson twisted mass clover “achimbdpsi”, the second
term is a mixture of non-clover and clover operations. One could use the same
“achimbdpsi” operation again with Mud

ee = Mud
ee = ε. The data structure for that

matrix has 2 · 62 c-number entries (two spin blocks with half-spin and color),
totaling in 144 floating point numbers per lattice site.

The solvers must be adapted to the two flavor operator. Instead of single spinor
fields they take arrays of Nf spinor fields. The clover term must now be passed
as an N2

f matrix. Internally, the solver use various BLAS routines like “axpy”
(y := ax + y) or “norm2” (|x |2). These routines have been generalized to Nf
flavors by calling the existing implementation multiple times. The square norm
needs a reduction in the end. The results from each flavor are computed separately
and the single flavor results are then added up to give the multi flavor result. The
number of flavors is passed as a C++ template argument, the compiler should be
able to easily unroll the loop and inline the single flavor implementation.

4As an intermediate step, one can just write the flavor structure of τ1 and M−1
ee explicitly and apply

that to the two-flavor spinor field. The resulting flavor components can be written as

(M̃ooχo)
u = [α+ iµγ5 + cSWToo]χ

u
o − εχ

d
o −

1
4
/Doe(M

−1
ee )

uu
/Deoχ

u
o −

1
4
/Doe(M

−1
ee )

ud
/Deoχ

d
o

(M̃ooχo)
d = [α− iµγ5 + cSWToo]χ

d
o − εχ

u
o −

1
4
/Doe(M

−1
ee )

dd
/Deoχ

d
o −

1
4
/Doe(M

−1
ee )

du
/Deoχ

u
o .
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4.4. Twisted Boundary Conditions

The twelve parameter gauge compression only works for SU(3) matrices. Twisted
boundary conditions work by multiplying every single element of the gauge field
with a complex phase. The matrices are then contained in U(3) and have nine real
parameters. Twelve parameter gauge compression will destroy this phase. When
using twisted boundary conditions, the only possibility had been to disable the
gauge compression. This would work but give less performance.

QPhiX has been extended to support compression for twisted boundary conditions
as part of this work. The gauge field itself is not changed in general, it is only
changed when multiplied to a spinor. QPhiX only multiplies the upper half-spinor
with the gauge field and then reconstructs the lower half-spinor from the upper
components. This halves the message sizes when spinors are transmitted over the
network and reduces the number of operations. The complex phase is added after
the gauge–half-spinor multiplication, the two spin components of the half-spinor
are multiplied with the phase. This costs a few more floating point operations.
The arithmetic intensity is still way below saturation such that this is essentially
free. In order to let user only pay this cost when they are interesting in twisted
boundary conditions, there are kernels that have twisted boundary conditions
enabled and disabled. In total there are 16 combinations of twisted and simple
boundary conditions.

4.5. Interface to tmLQCD

QPhiX has been developed as a library to be primarily used within Chroma. The
tmLQCD software [54] has its own Krylov solvers implemented. Benchmarks have
shown that on architectures like KNL, QPhiX delivers more performance than
the tmLQCD solvers. The additions of non-degenerate twisted mass and twisted
boundary conditions make QPhiX feature complete for tmLQCD.

An interface was initiated by Schröck [94] and then further pursued by my col-
leagues Bartosz Kostrzewa and Peter Labus. Now one can use the QPhiX solvers in
tmLQCD. For the heavy quarks, this gives a speed-up of around 2 on AVX2, larger
speed-ups are expected on AVX512 which at the time of writing still has a minor
bug and therefore cannot be tested yet.
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For very light quark masses the CG and BiCGStab solvers are inferior to multigrid
solvers like implemented in DDαAMG. With the bindings to the solver libraries, one
can use different solvers for different monomials which is a significant performance
advantage.

In order to expose all kinds of operators that are implemented in QPhiX, an abstract
base class was introduced on the tmLQCD side. Eventually this structure could be
moved into the QPhiX codebase. tmLQCD is a pure C code, so the C++ functions of
QPhiX had to be wrapped into C functions. Template parameter must be expressed
as simple C types, there is a lot of template instantiation code in the interface.

Another issue faced along the way are different parameterizations of the theory.
tmLQCD uses the κ-parameterization whereas QPhiX does not. Functions that
convert spinors and gauge fields between the two programs had to be developed
and tested. Data layout of QPhiX is fundamentally different from tmLQCD, a lot
of index manipulation is needed to transfer the data correctly. The designated
SIMD direction in QPhiX is the x-direction, in tmLQCD this is the z-direction. An
interchange of these directions as well as a compensating change in the γ-matrices
has alleviated this problem. The order of MPI directions in QPhiX is t yzx whereas
tmLQCD has t x yz. Fortunately the QMP library supports a dimension mapping
which can easily compensate for this difference.

4.6. Twisted Preconditioning Mass

The twisted mass clover in QPhiX is implemented such that the twisted mass µ is
added to the clover term T and stored in a single data structure. tmLQCD instead
only stores the clover term and adds the twisted mass on the fly.

A similarly independent twisted mass ρ has been added to the QPhiX operators.
The iργ5 has been implemented in the “achimbdpsi” kernel function where it will
unconditionally add this to the output spinor field. Instead of making this yet
another template parameter, it was decided that these four flops will not be noticed
in the over thousand flops needed for the whole operator application. If we should
ever have an architecture where we are not bound by memory access, this decision
can be revisited. On current platforms we are far from saturation, on KNL by a
factor of at least 8.

Incidentally, the structure of this term is exactly the same as the twisted mass itself,
at least in the degenerate case. Therefore the implementations of plain Wilson and
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twisted mass Wilson “achimbdpsi” become equivalent from the code and one could
think of using only this twisted preconditioning mass in the degenerate cases. This
would allow for more code re-use.

4.7. Software Engineering

QPhiX has around 40000 lines of code but provides a solver only. It has to be
used in packages like Chroma or tmLQCD. These have 500000 and 140000 lines
of code, respectively. This means that there is a lot of complexity that needs to
be maintained over the timespan of decades. It must be ensured that the code is
working correctly and does not stop working without anyone noticing.

The operations implemented in QPhiX are already implemented in the QDP++
library. The existing implementation is tested and has been used to produce results,
this is the reference implementation for QPhiX. There are a lot of unit tests that
test the QPhiX functions against their QDP++ equivalents. Incidentally, around a
third of source lines are for testing.

Unit tests are only useful if they are run often. Projects often suffer from commits
that do not even compile cleanly or fail the tests. For QPhiX we therefore use
continuous testing using Travis CI [95]. Every git commit that is pushed to GitHub
will be compiled from scratch using GCC and OpenMPI. Then all test cases run
through. If any of that fails, the commit is marked and the developer can fix it
quickly. This way it is possible to provide a stable devel branch.

A project under heavy development often suffers from the buildup of low quality
code. It is important to refactor code every once in a while to make addition of
features sustainable. Several thousand lines of code were redundant and could be
deleted by mild refactoring steps. Addition of new features like twisted boundary
conditions or non-degenerate doublets then only added a manageable amount of
new code.

Incremental compilation time has a big impact on developer productivity. If a
minor change causes a ten minute rebuild of the project, a lot of potential focus
is lost. In QPhiX the root cause for long compilation is the use of C++ templates
which make QPhiX mostly a header-only library. All the kernels have been included
in the headers as well, resulting in recompilation of millions of lines of generated
code for every single test program. This issue has been alleviated by the use of
explicit template instantiation where template functions are compiled into a static
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library for a certain set of template parameters. This has reduced the amount of
code that needs to be recompiled significantly, saving a lot of time in incremental
builds. Also the RAM requirement for each compiler process has gone down from
2000 MiB to 300 MiB. Incremental builds of the test cases now takes a couple ten
seconds instead ten minutes.

The addition of twisted boundary conditions has made it necessary to build 16
times as many kernels. Without the changes to the build system, incremental
compilation time would be in the order of hours, needing in the order of 30 GiB
of memory. This would make automated testing on Travis CI impossible. Now it
is still possible to compile the 20 million lines of code in a reasonable amount of
time.

New features are implemented in a separate git branch. In order to make the
feature available for all users, it needs to be merged into the main branch, usually
devel or master. While developing a feature, one should regularly merge changes
on the main branch into the feature branch to ensure that the new feature stays
compatible with the remaining code. Unfortunately, a lot of work had been done
in such feature branches with no effort to merge them back into the main branch.
Therefore these features are not available, at least not usable together with other
features. After a while the main branch has advanced in a way that it becomes
incompatible with the proposed features. If one eventually gets the feature into
the main branch, a lot of changes might be needed to actually get the feature in.
Therefore in this work we have tried to work together with the upstream authors
to get features merged in quickly.





5. Conclusion & Outlook

During the course of this work, experience with the Chroma software has been
gathered, further HMC setups can now be developed rather quickly. The new
Wilson clover ensembles have been preliminarily analyzed and the pion mass was
extracted. These configurations will be analyzed further in the future, especially
with the σ resonance in mind.

QPhiX has gained a couple new features, most importantly the non-degenerate
twisted mass operator. With the interface to tmLQCD it is now possible to perform
HMC simulations with very light quarks (using DDαAMG) and more efficient
charm and strange quarks (using QPhiX).

The implementation of the non-degenerate doublet in QPhiX can be made faster,
still. The communication strategy was modified earlier this year, the changes were
only implemented for non-twisted mass fermions. These modifications could be
brought to the twisted mass case. Also there are more applications of the hopping
matrix than strictly needed, this could be alleviated with a custom kernel code.
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A. XML File for Chroma

Chroma uses XML files for input of the parameters and output of the measurements.
In this chapter, a couple of full examples as well as a couple of hints to construct
these files will be given. A broad overview of Chroma XML files is given by Joó
[96].

For parsing the output XML, good experiences have been made with XML libraries
supporting XPath. Using grep on XML is not recommended.

In order to compile Chroma, have a look into my compilation script1 that supports
JURECA and Marconi A2 and Hazel Hen. Typical error messages that have been
observed in the course of this thesis have been published on the Chroma wiki2.

A.1. Full Examples

On my website, there is a section with supplementary materials. Including these
text files in this thesis would make it around twenty pages longer without it being
useful.

http://martin-ueding.de/studies/msc_physics/physics900/index.html

A.1.1. HMC

One supplement is a full parameter file for the hmc program of Chroma, named
hmc.xml. It is the one used in the simulations in this thesis. It should cover a lot
of interesting points as it employs

• Nf = 2+ 1 Wilson clover quark flavors;

1https://github.com/martin-ueding/chroma-auxiliary-scripts/tree/master/
compilation

2https://github.com/JeffersonLab/chroma/wiki/Compiling-Chroma
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• mass preconditioning terms on different time scales;
• a rational approximation that is split into two time scales; and
• different solver residuals for the molecular dynamics and the acceptance

step.

A.1.2. Meson Correlators

The file meson.xml is a XML input for chroma which will read in a gauge con-
figuration and compute pion and kaon correlators from them. After chroma has
been run, there will be a file containing the correlation data. There will be 16
blocks which each contain a gamma_value tag. Also for every momentum used,
the correlator will be given as a sequence of real and imaginary parts. The number
of those inner blocks depends on the number of time slices of the gauge field.

<Point_Point_Wilson_Mesons>
<elem>
<gamma_value>0</gamma_value>
<momenta>
<elem>
<sink_mom_num>0</sink_mom_num>
<sink_mom>0 0 0</sink_mom>
<mesprop>
<elem>
<re>0.535827303605439</re>
<im>0</im>

</elem>
<elem>
<re>-0.0651788529561225</re>
<im>0</im>

</elem>
...

</mesprop>
</elem>

</momenta>
</elem>
...

</Point_Point_Wilson_Mesons>

Chroma always computes all 16 possible Γ structures, the ψ̄Γiψ operators. Their
numbering system comes from a binary and corresponds to the Dirac matrices γi
used. For instance for the pion we need Γ = γ5. Here the definition is γ5 =
γ1γ2γ3γ4. We use the matrices 4321 which gets encoded into the binary mask
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11112. Converted to decimal, that is 1510. Therefore the pion (or kaon) correlator
is in the block with <gamma_value>15</gamma_value>.

A complete table of these structures can be found in the Chroma repository at
docs/notes/chroma_gamma_matrices.tex.

A.1.3. Wilson Flow

Computing the Wilson flow is a single measurement that can be done with the
chroma program using a file like wflow.xml.

The integer in nstep gives the number of integration steps, wtime is the total
flow time. The step size is the quotient of those numbers. t_dir specifies the
time direction (usually 4). Chroma will output two averages, one of the temporal
and another of the spatial components. By setting t_dir to 5, one can average
isotropically over all space and time directions.

The output will contain all the details of the configuration and one block with
three tags:

<wilson_flow_results>
<wflow_step>0 0.01 ... </wflow_step>
<wflow_gact4i>-0 -0 ... </wflow_gact4i>
<wflow_gactij>2.57482770984263 2.57562346045517 ...</wflow_gactij>

</wilson_flow_results>

The tag wflow_step contains a list of the time steps used in the flow direction.
The lists in wflow_gact4i and wflow_gactij contain the gauge action densities
averaged across the F4i components (temporal) and the Fi j components (spatial),
respectively.

A.2. Finding XML Parameters

There seems to be no central documentation for all the parameters that can be
supplied in the input XML file. One can go through the C++ source code to find
the possible parameters. The parameters for a certain entity are usually read in the
same file as the entity is defined. The entities are loaded into a factory, indexed
by the const std::string name attribute. Using grep to find it in the codebase
will yield the filename:
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$ git grep REMEZ
lib/update/molecdyn/monomial/remez_rat_approx.cc: const std::string name =

"REMEZ";

Most of the these C++ source files contain a Params struct or a read function. The
following snippet is what to look for:

Params::Params(XMLReader &xml, const std::string &path) {
XMLReader paramtop(xml, path);

read(paramtop, "numPower", numPower);
read(paramtop, "denPower", denPower);
read(paramtop, "lowerMin", lowerMin);
read(paramtop, "upperMax", upperMax);
read(paramtop, "degree", degree);

if (paramtop.count("digitPrecision") != 0)
read(paramtop, "digitPrecision", digitPrecision);

else
digitPrecision = 50;

}

From this the parameters can be extracted. The parameter digitPrecision is
optional and has a default of 50. The resulting XML could be the following:

<ratApproxType>REMEZ</ratApproxType>
<lowerMin>1.0e-3</lowerMin>
<upperMax>33</upperMax>
<numPower>-1</numPower>
<denPower>4</denPower>
<degree>16</degree>

Another example are the parameters of the QPhiX clover multi-shift inverter. The
file where the std::string name is defined can be found with grep as well:

$ git grep QPHIX_CLOVER_MULTI_SHIFT_INVERTER
lib/actions/ferm/invert/qphix/multi_syssolver_mdagm_cg_clover_qphix_w.cc:

const std::string name("QPHIX_CLOVER_MULTI_SHIFT_INVERTER");

The parameters are not defined in that class, though. Traversing the C++ inheri-
tance, one finds the parameters in the file
lib/actions/ferm/invert/qphix/multi_syssolver_qphix_clover_params.cc.
In there, the parameters can be found:

MultiSysSolverQPhiXCloverParams::MultiSysSolverQPhiXCloverParams(
// ...
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read(paramtop, "MaxIter", MaxIter);
// ...

if (paramtop.count("Verbose") > 0) {
read(paramtop, "Verbose", VerboseP);

} else {
VerboseP = false;

}
// ...

}

In case a name is used that is not known, Chroma will output an error message and
print all the possible entities that are available in the given context (monomials,
solvers, ...). Parameters that are not needed are silently ignored, this can be
irritating at times.

This section has also been published on the Chroma wiki3.

A.3. Available Names

On the Chroma Wiki, there is a page4 that lists all the const std::string name

variables found within the Chroma library. They are extracted and formatted with
a small script5.

3https://github.com/JeffersonLab/chroma/wiki/Creating-XML-Input-Files
4https://github.com/JeffersonLab/chroma/wiki/Available-XML-Entities
5https://github.com/martin-ueding/chroma-auxiliary-scripts/tree/master/
extract-names

https://github.com/JeffersonLab/chroma/wiki/Creating-XML-Input-Files
https://github.com/JeffersonLab/chroma/wiki/Available-XML-Entities
https://github.com/martin-ueding/chroma-auxiliary-scripts/tree/master/extract-names
https://github.com/martin-ueding/chroma-auxiliary-scripts/tree/master/extract-names
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