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Correlation functions of pions that were computed with lattice QCD methods
are analyzed. The effective masses of single pions and two interacting pions are
extracted. Using a finite size formula by Lüscher, the S-wave scattering length is
computed.
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1 Data generation

1 Data generation

Monte Carlo methods can be used to simulate quantum systems. Key pieces are Feynman’s
path integral formalism and Euclidean spacetime. In the latter, the metric tensor η has
signature ±4 and the weight factor in the path integral is exp(−Scl) instead of exp(iScl); Scl
is the classical action (Creutz and Freedman 1980, Section 2). A Monte Carlo algorithm
like the Metropolis algorithm can then be used to generate configurations which are already
distributed by the weight of the classical action. Therefore, expectational values of observables
are simply calculated and averaged over all available configurations (ibid., (3.7)).

The group of Andreas Kell, Martin Efferz and Simon Blanke have used this for the harmonic
oscillator in their Computational Physics project this year. I also did this in my bachelor’s
thesis last year (Ueding 2014).

For quantum chromodynamics (QCD), the theory of the strong force, this methodology can
be used as well. The action of QCD is used with a hybrid Monte Carlo algorithm to generate
configurations of gauge fields on a four dimensional lattice. This process is done for several
ensembles which differ in parameters like the quark mass. Ensemble generation takes a lot
of computing time, so the results are made available to download.

As with the harmonic oscillator on the lattice, expectation values of observables can be
computed for each configuration of the ensembles and then averaged (without weight) over
all ensembles yielding an estimate for the observable. Since this uses a field theory, particles
of interest can be created at the beginning of time and annihilated laster on. This way, specific
particle configurations (like π–π scattering) can be examined without needing to generate
new configurations.

Using the correct operators, it is possible to construct correlation functions which contain
information about the energies/masses of the involved particles, analogously to (Creutz and
Freedman 1980, (4.14)) for the harmonic oscillator. I was given those correlation functions
to analyze.

2 Analysis methods

Figure 1 shows the data flow in the analysis. This section will go through the whole analysis
in the order of the flow chart. The methods used will be explained along the way when they
are needed.
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2 Analysis methods

Figure 1: Data flow in the analysis. The first step is the import of the data, which is covered
in Section 2.1. The two and four point functions are combined into pairs for each
configuration. The data is then folded in half. The bootstrap step is covered in
Section 2.2. Then a correlated fit is performed, see Section 2.3 for details. The
second to last step is the application of Lüscher’s formula, see Section 2.4. The
results are shown in Section 3.
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2 Analysis methods

2.1 Import data

The data that I was given is organized in different ensembles (like A30.32, A100.24) as
mentioned in the introduction. For each ensemble, multiple configurations were simulated.
The output of each configuration is one two-point correlation function Cπ(t) and three four-
point correlation functions C (i)ππ(t). Those three different contractions are combined into a
single ππ-correlation function:

Cππ(t) = C (1)ππ(t) + C (2)ππ(t)− 2C (3)ππ(t). (1)

Some of the ensembles had multiple versions of the data in it. I analyzed all of them sorted
by file name. In the tables, you will find the ensembles multiple times, those are the different
versions.

The number of configurations in each ensemble is called N .

In both space and time, the lattice used in the computation has periodic boundary conditions.
The spatial lattice extent is called L, the temporal one T . This leads to a symmetry where the
time slices t and T − t closely related. The correlation functions C(t) with t = |t1 − t2| are
symmetric in t1 and t2, such that only the data in the interval [0, T/2] carries independent
information. Before starting any other calculations with the data, it is folded in half and
averaged. The data then looks like in Figure 3 which appears laster on.

2.2 Bootstrap

All error estimation is done with the bootstrap method. One other known method to compute
errors is the Gaussian error propagation. This method involves computing derivatives of
the functions applied to the data, which can be either numerically unstable or just not
really applicable: How does the variance of the mean change when you change the input
data?

In order to get rid of all those problems at the same time one does a meta analysis of the data
itself. To get back to the example of the mean, let X be the set of N data points (x i ∈ R). Then
the estimator of the mean µ̄ can be computed directly from X . Now R bootstrap samples X r

(upper index, no power) are computed from the set by randomly selecting N elements from
X and putting them into X r . Since X is sampled from the original distribution, it resembles
the original distribution as good as it can with only N elements. X r therefore is sampled
from an approximation of the original distribution. Then the estimators for the means µ̄r

are computed from the bootstrapped sets. The mean of all the µ̄r should give µ̄, which was
computed from the original data. The error estimate is then the standard deviation of all the
µ̄r . (Physics 509: Bootstrap and Robust Parameter Estimation, Slide 5)
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2 Analysis methods

The number of bootstrap samples R was set to R= 3N for each ensemble.

2.3 Correlated fit

The pion masses are contained in the correlation functions in the form of an exponential decay
constant. Since time is periodic in this simulation, the correlation function is also periodic
with the temporal lattice extent T . Therefore, the expectation is not a simple exponential
decay, exp(−λt), but a cosh-like function. The four-point functions also have a constant
contribution due to the finite lattice extent. For both two and four point functions, the
functions that I fitted to the folded data with parameters λ are:

mπ(t,λ) = λ1 [exp(−λ2 t) + exp(−λ2[T − t])] (2)

and

mππ(t,λ) = λ1 [exp(−λ2 t) + exp(−λ2[T − t])] +λ3. (3)

The parameter λ3 is a lattice artifact that will vanish for L→∞.

In order to determine the fit range, I have used the effective mass as shown in Figure 2.
The plateau starts at t/a = 13, so those are the points I have used. The folded correlation
functions with the fit functions are shown in Figure 3.

The correlation functions themselves are highly correlated with respect to time. Therefore, a
regular least squared fit would give a χ2 that would be way too low for the assumed degrees
of freedom. The p-values usually end up around 1, which does not imply a perfect fit but
rather that the data fits the model too well. This, in turn, means that errors and residuals are
over-estimated with the given model. A different model is called for: the correlated fit.

For the correlated fit, a new likelihood function is needed. I chose to keep the falling
exponential likelihood function but incorporate the correlation into the χ2. First, a correlation
matrix C is needed, which is computed from the R bootstrap samples: (Michael and McKerrell
1995, Section 2)

Ci j :=
1

R[R− 1]

R
∑

r=1

[x ir − x̄ iR][x jr − x̄ jR], x̄ iR :=
1
R

R
∑

r=1

x ir . (4)

Using this correlation matrix, a new χ2 can be defined which incorporates the inverse
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2 Analysis methods
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Figure 2: Effective mass of A100.24 ensemble.
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2 Analysis methods
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Figure 3: Folded correlation functions with cosh-like fit function. On the left side, the two
point function is shown using a logarithmic ordinate scale. The four point function
is shown on the right. Only the blue data points were used for fitting. The right
ordinate shows the residuals in great magnification (red). One can see that the errors
seem way too large compared to the residuals. This is a result of the autocorrelation
of the data points. Ensemble is A100.24.

correlation matrix:

χ2
corr :=

T
∑

i, j

[ x̄ iR − f (t i ,λ)]C
−1
i j

�

x̄ jR − f (t j ,λ)
�

. (5)

The regular χ2 has C−1 = 1 and is just the sum of the squared residuals.

In the curve fitting process, a function like scipy.optimize.curve_fit tries to find the
parameters λ such that χ2 becomes minimal. In my implementation, I used the function
scipy.optimize.leastsq which tries to minimize the squared norm of a vector valued
function. With a Cholesky decomposition, this can be done like so: Define the square bracket
in Equation (5) to be the residual vector r (λ). Then the matrix multiplication can be written
as

χ2 = r TC−1r . (6)

The Cholesky decomposition gives me C−1 = U†U, where U is a upper triangle matrix. Then I
can write

χ2 = [Ur ]†[Ur ] = ‖Ur‖2 (7)

where Ur is a vector that can be fed into scipy.optimize.leastsq.
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2 Analysis methods

As shown in Figure 1, the correlation matrix computed from the bootstrap samples is also
used to fit the original data. Each fit yields a value for mπ and mππ. The computed masses
are shown in Table 1.

2.4 Scattering length

There is a relation between mass difference to scattering length (Lüscher 1986, (1.3)):

mππ = 2mπ −
4πa0

mπL3

�

1+ c1
a0

L
+ c2

a2
0

L2

�

, c1 = −2,837 297, c2 = 6,375 183 (8)

Using the computed mπ and mππ with Lüscher’s formula, I can numerically solve for the
scattering length a0. In my program, I use scipy.optimize.brentq that is based on the
algorithm by Brent (1973). The computed scattering lengths are shown in Table 1.

Equation (8) can be motivated like so: Let Ĥ = Ĥ0 + V̂ be the Hamiltonian for two identical
particles where Ĥ0 is the free Hamiltonian and V̂ a spherically symmetric potential with a
limited range (or faster than 1/

p
r decay). Then the probability that the two particles are in

interaction range scales like L−3 as this is the inverse volume which the two particles occupy.
The most prominent finite size effect scales to the third power, all other effects can only have
higher powers of L−1.

In the first order of the potential V , the ground state (all momenta are zero) will have an
energy shift proportional to L−3 (ibid., (2.24)):

∆E =
1

2L3
V̂ (0,0) +O (V 2).

The scattering amplitude T as well as the S-wave scattering length a0 can be expanded in
powers of V̂ (Born series). Using first order term from (ibid., (2.18)), above equation can be
rewritten with the scattering length (ibid., (2.25)):

∆E = −
4πa0

mL3
+O (V 2).

To first order on the potential V , the leading term scales with L−3, like in Equation (8).
To obtain more terms, a complete perturbation expansion needs to be written out. That
expansion will be both in terms of L−1 and V . Lüscher then was able to group those terms in
powers of L−1 and obtain Equation (8).
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3 Results

ensemble mπ mππ a0

A100.24 0,222 38(23) 0,45125(52) −1,346(29)
A100.24 0,222 33(40) 0,45083(95) −1,287(132)
A100.24 0,222 39(24) 0,45111(53) −1,316(39)
A30.32 0,124 16(55) 0,25135(144) −0,904(273)
A40.20 0,147 79(78) 0,314 29(162) −1,426(52)
A40.24 0,144 47(52) 0,298 15(109) −1,255(51)
A40.24 0,144 53(31) 0,298 42(71) −1,272(51)
A40.32 0,141 26(22) 0,286 26(55) −1,228(92)
A60.24 0,172 75(52) 0,352 78(126) −1,194(112)
A60.24 0,172 79(48) 0,354 04(99) −1,361(91)
A80.24 0,199 30(24) 0,405 11(57) −1,228(43)
B55.32 0,155 53(22) 0,315 89(55) −1,676(117)
D45.32 0,120 47(46) 0,250 57(137) −2,416(205)

Table 1: Computed masses from correlation functions. The last column shows the scattering
length a0 which is computed using Lüscher’s formula, Equation (8).

3 Results

My analysis of the correlation functions gives me values for the masses of a single pion (mπ)
and a pair of them (mππ). Using Equation (8), I was able to compute the S-wave scattering
length a0 from the energy difference. Those values are listed in Table 1.

The different ensembles assume different masses for the quarks. The first number behind the
letter gives the assumed quark mass. In most cases, a lower quark mass also yields a lower
pion mass mπ. Those pion masses are not directly the physical ones, one needs to extrapolate
to the physical point. The masses and scattering lengths are given in lattice units and depends
on the lattice spacing. The product of mass and scattering length, a0mπ, is independent of
the lattice spacing and a good measure for extrapolation. Table 2 shows this product, as well
as the decay constant.

The results from Table 2 are shown in Figure 4. My data points have no marker, the reference
values have a diamond marker. The solid black line is the expectation, not a fit.

As can be seen with the comparison to the reference data, that my values are a lot less
accurate than the reference ones. For most points, my errors are a lot larger. The statistical
uncertainty on my values is high enough for them to be compatible with the reference and
expectation.

The range of fitting was set manually by looking at the plateau of the effective masses (see

9



3 Results
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Figure 4: mπa0 as a function of mπ/ fπ as shown in Table 2. Diamond data points are taken
from draft paper from Carsten Urbach’s workgroup. Some ensembles had multiple
versions of the correlation functions in them, this plot shows all of them in lexical
order of the pathname.

10



3 Results

ensemble L T a0mπ mπ/ fπ

A100.24 24 48 −0,2993(66) 2,77
A100.24 24 48 −0,2862(292) 2,77
A100.24 24 48 −0,2927(88) 2,77
A30.32 32 64 −0,1122(339) 1,86
A40.20 20 48 −0,2107(77) 2,11
A40.24 24 48 −0,1813(74) 2,03
A40.24 24 48 −0,1839(74) 2,03
A40.32 32 64 −0,1735(131) 2,06
A60.24 24 48 −0,2063(194) 2,32
A60.24 24 48 −0,2351(157) 2,32
A80.24 24 48 −0,2448(87) 2,55
B55.32 32 64 −0,2607(182) 2,34
D45.32 32 64 −0,2911(248) 2,49

Table 2: Lattice size of the ensembles together with computed quantities. These data points
are also shown in Figure 4. The pion decay constants are taken from (Helmes et al.
2014, table 1).

Figure 2). This introduces some statistical errors which cannot be quantified with the current
machinery. A way to get beyond this limitation is to run the whole analysis with all possible
fit ranges. The different result are then weighted by the p-values of the respective fit.
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