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1 The S-Matrix

1.1 Momentum conservation

This problem covers the material also shown by Peskin and Schroeder (1995, p. 94).

Momentum conservation at vertex Each vertex gives us a factor −iλ
∫

d4z, where z is the
four-vector for the particular vertex. Each vertex has to have its own internal integration variable.
Then each propagator gives us D(x−y ). Looking at the vertex and all the propagators (labeled with i)
that end in this vertex, we get the following term, which we label A to continue working on it.

A := −iλ

∫

d4z
∏

i

D(xi − z)

To say anything about the momentum, we have to Fourier transform the propagator. That is given by
Peskin and Schroeder (ibid., (4.46) as

D(x − y ) =
∫

d4p
[2π]4

i
p2 −m2 + iε

exp (−ip · [x − y]) .

1

mailto:mu@martin-ueding.de


physics755 – Problem Set 9 1 The S-Matrix

We insert this into A.

A= −iλ

∫

d4z
∏

i

∫

d4pi

[2π]4
i

p2
i −m2 + iε

exp (−ipi · [xi − z])

We can move all the z dependence to the very back of the expression to isolate the part which is of
interest here.

= −iλ
∏

i

∫

d4pi

[2π]4
i

p2
i −m2 + iε

exp(−ipi · xi)

∫

d4z exp(ipi · z)

We execute the product for the last term to get the expression that we can work with.

= −iλ

�

∏

i

∫

d4pi

[2π]4
i

p2
i −m2 + iε

exp(−ipi · xi)

�

∫

d4z exp

�

i

�

∑

i

pi

�

· z

�

This last integral will give us the desired result of a momentum conserving δ-distribution.

= −iλ

�

∏

i

∫

d4pi

[2π]4
i

p2
i −m2 + iε

exp(−ipi · xi)

�

[2π]4δ(4)
�

∑

i

pi

�

Each external line has a factor exp(−ip · x) associated with it. So this works for external lines just the
same as it does for propagators ending on the vertex.

Overall momentum conservation We have momentum conservation in each vertex as derived
above. Just like with Kirchoff’s law for the electric current (which follows from the continuity equation
and that %̇ = 0 in regular wires), momentum can be transfered between the vertices but is conserved
in total.

Fixed internal momenta Each propagator brings a momentum with it. If there are too few
propagators in the diagram, everything is fixed. Whenever there is a loop in the diagram, there is a
freedom in momentum there, both can be increased by the same amount and total momentum is
conserved.

Internal momenta are fixed if there is no closed path that connects vertices. So if the graph is a tree,
all internal momenta are fixed by momentum conversion.

1.2 Momentum space Feynman rules

This problem covers the material also shown by Peskin and Schroeder (1995, p. 95).
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The number of vertices should still give the order in λ, so we will associate the factor of −iλ with the
vertices.

We have seen in the A that the remainder of the propagator is
∫

d4p
[2π]4

i
p2 −m2 + iε

exp(−ip · x)

It will be convenient to split this up into several parts. The integration over p becomes a rule that all
internal momenta need to be integrated over in the end. Each propagator gets the fraction assigned.
The exponential can be assigned to the external point connecting the propagator.

This way we can have the same rules that are given by Peskin and Schroeder (1995, p. 95):

1. Each propagator gets a factor

i
p2 −m2 + iε

assigned.

2. Each vertex gets just the factor −iλ, which then also determines the order of the diagram.

3. Each external point gets the exponential exp(−ip · x). This reference to a space-time point is a
problem since we do not want them here. In a momentum space prescription, there should not
bet external points to begin with. There should only be incoming propagators.

4. Since we derived that total momentum at the vertices is conserved, we have to apply the derived
δ-distribution and assert momentum conservation at each of the vertices.

5. All internal momenta have to integrated over.

6. And as before, we need to divide by the symmetry factor.

1.3 Case for Dirac and electromagnetic field

This problem covers the material also shown by Peskin and Schroeder (ibid., §4.7f).

Looking at Equation (7) from the problem set we see that the factor exp(−ik · x) comes from the
application of a positive frequency operator φ+I onto a free momentum state |k〉. In the previous
subproblem we looked at the Feynman rules for the scalar fields.

Fermions The fermions fulfil the Dirac equation and therefore need to be modeled with a four-
component spinor instead of a single scalar field. Also, the fermionic fields anticommute which
needs to be taken into account as well in the contractions. A sensible way to do this is using a
generalized from of Wick’s theorem where the time and normal ordering operators account for the
sign changes.

The Dirac field also has distinct creation and annihilation operators, whereas the real scalar field
only had particles which are their own antiparticles. So far we only had the real scalar field φ which
occurred in even powers in the Hamiltonian. Now we have the fields ψ̄ and ψ which occur in pairs
to give bilinears with distinct transformation properties under the Lorentz group. The only nonzero
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contraction we can build is from a mixed pair of those, contractions between ψs or ψ̄s respectively
give a zero propagator.

The “external leg rule” then changes by the way the Dirac fields act on the pure momentum
states:

ψI(x) |k, s〉0 =ψI(x)
p

2Ek as†
k |0〉 .

We expand the field ψ in term of positive and negative frequency operators. Only the positive
frequency part is interesting since we evaluate a matrix element with single-momentum states on
both sides eventually. Peskin and Schroeder (1995, (4.114))

=

∫

d3k′

[2π]3
1

p

Ek ′

∑

s′
as′

k ′u
s′(k ′)exp(−ik ′ · x)

p

2Ek as†
k |0〉 .

The anticommutator of the ladder operators will give us a δ-distribution and we can simplify this
to

= us(k)exp(−ik · x) |0〉 .

Now we have the exact same exponential as there is in Equation (8) on the problem set. There is
an additional upper spinor component us(k). From this we would conclude that the factor for each
external line would be us(k)exp(−ik · x). Peskin and Schroeder (ibid., p. 118) state the “external leg
rule” for fermions as just having us(k), though. So the exponential is moved somewhere else?

The same argument can probably be made for the ψ̄ as well, and then one would have ψ̄ acting on
antifermions, which will give a factor v̄s(k).

In both cases, the action of the “hermitian conjugate and γ0 version also gets such a bar over the
factor in the diagram. So reversal of the particle number flow adds or removes the bar over the spinor
part.

Photons As mentioned in front of part 6 of this exercise on the problem set, the interaction term is
given by Hint = ieψ̄γµψAµ. The “external leg rule” is given on the problem set as −ieγµ. We do not
see how this comes from the Hamiltonian.

1.4 Momentum flow

In a pair creation event the total particle number is zero, as is the total momentum. Such a process
needs some energetic justification. Maybe it is a decay of a spin-0 boson into two fermions or photons.
The process we have in mind looks like this:

We have momentum conservation enforced at the one vertex: p1+p2 = . If we just take the absolute
values using the directions defined by the diagram we have p1 = p2. Since we have no particles in
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total, one needs to be the anti-particle of the other one. Both particles move away from the vertex, so
for anti-particles the particle number flow goes against the direction of the momentum arrow.

In the case of electron-positron-scattering one often has seen a diagram as such, where the positrons
travel backward in time, so to speak:

It was asked for internal lines in the question. We can reformulate our initial process as a vacuum
bubble:

The particle number must be conserved at each vertex. We can look at each vertex and interpret it
like one particle is arriving, the other is leaving. The total number is conserved. Or we say that from
each vertex propagates a particle and an anti-particle.

1.5 Momentum space Feynman rules for Dirac- and EM-field

The propagator for the Dirac field is by given by Peskin and Schroeder (1995, p. 118) as

i[/p+m]

p2 −m2 + iε
.

This differs from the scalar field by the factor /p+m. The states this propagator acts are four-component
spinors, the propagator therefore needs to be a 4× 4 matrix. Something contracted with the Dirac
matrices seems to be a good idea here. Looking at the propagator of the Dirac field in position space,
we see that it exactly has the form we want here. (ibid., (3.121))

The propagator for the electromagnetic field is by given by Peskin and Schroeder (ibid., p. 123)
as

igµν
q2 + iε

.

They say it is difficult to prove but easy to guess. So let us try whether we could have guessed it.
The denominator makes sense since photons are massless. The imaginary unit in the numerator is
also present in every other case. We have to explain the presence of the metric tensor g. The four
components of the electromagnetic field obey the Klein-Gordon equation individually. So the Klein-
Gordon propagator is a good start. Since photons have a vector polarization and simple propagation
cannot change this polarization, only states with the same polarization can propagate. The metric
tensor g then creates the scalar product between the polarization vectors of the incoming and outgoing
states and gives the propagation overlap. Seems legit.
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1.6 Leading-order scattering

There are two possible diagrams, with the convention that time is upwards in our diagrams. The first
one has a repulsion of the two fermions.

The other one has some sort of attraction.

This second diagram exchanges the two fermions. Since they are distinguishable, this would be
excluded and only the first one kept.

We apply the rule and we get the following factors:

• The left incoming particle gives us a factor us(k).

• The right one gives us us(k ′).

• The two vertices introduce a factor −ieγµ each, so we get [−ie]2γµγν.

• The photon propagator gives us the term

−igµν
q2 + iε

where q := p′ − p is the momentum exchanged.

• The left outgoing particle gives ūs(p).

• The right outgoing particle gives ūs(p′).

Then we have to put everything together and we arrive at the matrix element:

iM = [−ie]2ūs(p′)γνus(k ′)
−igµν
q2 + iε

ūs(p)γµus(k)

Perhaps the assigning of the momenta went wrong, but the structure of the matrix element is the
same except for the spin indices that we have. They need to be summed upon, probably.
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1.7 Momentum space potential

This problem covers the material also shown by Peskin and Schroeder (1995, p. 125).

We continue to use the matrix element we have just computed.

iM = [−ie]2ūs(p′)γνus(p)
−igµν
q2 + iε

ūs(k ′)γµus(k)

We move the numbers up to the front.

=
ie2 gµν
q2 + iε

ūs(p′)γνus(p)ūs(k ′)γµus(k)

We look at the spinor scalar products. We look at ν= 0 first.

ū(p′)γ0u(p) = u†(p′)u(p)

The boosted spinors were given by a factor
p
p ·σ (ibid., (3.50)). So we have

=

�p

p′ ·σξ′
p

p′ · σ̄ξ′

�†�p
p ·σξ

p

p · σ̄ξ

�

.

Since we assume p → 0, only the zeroth component in the scalar products will contribute a sizeable
term. The p0 component is the energy of the particle. However, we can directly use it as the mass in
the non-relativistic limit. And although the particles are indistinguishable, they have the same mass
m≈ p0.

=

�p

p0σ0ξ′
p

p0σ0ξ′

�†�p
p0σ0ξ

p

p0σ0ξ

�

.

The σ0 is just the identity matrix, so this scalar product leaves us with

= mξ′†ξ.

One can also show that the case ν= 1,2, 3 give a vanishing result.

Now we can use that to simplify the matrix element.

iM =
ie2 gµν
q2 + iε

ūs(p′)γνus(p)ūs(k ′)γµus(k)

=
ie2 g00

q2 + iε
4m2 [ξ′ξ](p) [ξ′ξ](k)
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The zeroth-zeroth element of the metric tensor is just one.

=
ie2

q2 + iε
4m2 [ξ′ξ](p) [ξ′ξ](k)

The only interesting term is the fraction, so we have

Ṽ (q) =
ie2

q2 + iε
.

One can Fourier transform this back and then one would get

V (x ) =
e2

4π
1
r

.

This is a repulsive potential, since in the limit r → 0, the potential energy goes up.

1.8 Antifermion

This problem covers the material also shown by Peskin and Schroeder (1995, p. 125).

For the antifermion, we need to use the spinor v instead of u. This one is made up from (ξ,−ξ). This
minus sign does not show up in the spinor scalar product because the γ0 exchanges the terms in a
way that they both cancel. In the contractions that we did in the derivation, there needs to be an
additional anticommutation because we want to act with a ψ̄ to the right. This will give us a minus
sign which makes the potential attractive.
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